




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
貴州省銅仁一中2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過點(diǎn)且斜率為的直線方程為()A. B.C D.2.已知定義在R上的函數(shù)滿足,且有,則的解集為()A B.C. D.3.若曲線的一條切線與直線垂直,則的方程為()A. B.C. D.4.已知O為坐標(biāo)原點(diǎn),=(1,2,3),=(2,1,2),=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),則當(dāng)取得最小值時(shí),點(diǎn)Q的坐標(biāo)為()A. B.C. D.5.在中,角,,所對(duì)的邊分別為,,,若,,,則A. B.2C.3 D.6.已知命題:,;命題:在中,若,則,則下列命題為真命題的是()A. B.C. D.7.在棱長均為1的平行六面體中,,則()A. B.3C. D.68.對(duì)于圓上任意一點(diǎn)的值與x,y無關(guān),有下列結(jié)論:①當(dāng)時(shí),r有最大值1;②在r取最大值時(shí),則點(diǎn)的軌跡是一條直線;③當(dāng)時(shí),則.其中正確的個(gè)數(shù)是()A.3 B.2C.1 D.09.圓與圓的位置關(guān)系為()A.外切 B.內(nèi)切C.相交 D.相離10.從直線上動(dòng)點(diǎn)作圓的兩條切線,切點(diǎn)分別為、,則最大時(shí),四邊形(為坐標(biāo)原點(diǎn))面積是()A. B.C. D.11.已知雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長為4,虛半軸長為5,則雙曲線的標(biāo)準(zhǔn)方程為()A.=1 B.=1C.=1 D.=112.已知命題:△中,若,則;命題:函數(shù),,則的最大值為.則下列命題是真命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知球面上的三點(diǎn)A,B,C滿足,,,球心到平面ABC的距離為,則球的表面積為______14.雙曲線的焦距為____________15.歷史上第一個(gè)研究圓錐曲線的是梅納庫莫斯(公元前375年—325年),大約100年后,阿波羅尼奧更詳盡、系統(tǒng)地研究了圓錐曲線,并且他還進(jìn)一步研究了這些圓錐曲線的光學(xué)性質(zhì),比如:從拋物線的焦點(diǎn)發(fā)出的光線或聲波在經(jīng)過拋物線反射后,反射光線平行于拋物線的對(duì)稱軸:反之,平行于拋物線對(duì)稱軸的光線,經(jīng)拋物線反射后,反射光線經(jīng)過拋物線的焦點(diǎn).已知拋物線,經(jīng)過點(diǎn)一束平行于C對(duì)稱軸的光線,經(jīng)C上點(diǎn)P反射后交C于點(diǎn)Q,則PQ的長度為______.16.已知函數(shù),則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知四邊形是空間直角坐標(biāo)系中的一個(gè)平行四邊形,且,,(1)求點(diǎn)的坐標(biāo);(2)求平行四邊形的面積18.(12分)已知函數(shù)的圖象在點(diǎn)處的切線與直線平行(是自然對(duì)數(shù)的底數(shù)).(1)求的值;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.19.(12分)如圖,點(diǎn)分別在射線,上運(yùn)動(dòng),且(1)求;(2)求線段的中點(diǎn)M的軌跡C的方程;(3)直線與,軌跡C及自上而下依次交于D,E,F(xiàn),G四點(diǎn),求證:20.(12分)已知是等差數(shù)列,,.(1)求的通項(xiàng)公式;(2)若數(shù)列是公比為的等比數(shù)列,,求數(shù)列的前項(xiàng)和.21.(12分)如圖,P為圓上一動(dòng)點(diǎn),點(diǎn)A坐標(biāo)為,線段AP的垂直平分線交直線BP于點(diǎn)Q(1)求點(diǎn)Q的軌跡E的方程;(2)過點(diǎn)A的直線l交E于C,D兩點(diǎn),若△BCD內(nèi)切圓的半徑為,求直線l的方程.22.(10分)已知等差數(shù)列的公差,前3項(xiàng)和,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用點(diǎn)斜式可得出所求直線的方程.【詳解】由題意可知所求直線的方程為,即.故選:B.2、A【解析】構(gòu)造,應(yīng)用導(dǎo)數(shù)及已知條件判斷的單調(diào)性,而題設(shè)不等式等價(jià)于即可得解.【詳解】設(shè),則,∴在R上單調(diào)遞增.又,則.∵等價(jià)于,即,∴,即所求不等式的解集為.故選:A3、A【解析】兩直線垂直,斜率之積為,曲線與直線相切,聯(lián)立方程令.【詳解】法一:直線,所以,所以切線的,設(shè)切線的方程為,聯(lián)立方程,所以,令,解得,所以切線方程為.法二:直線,所以,所以切線的,,所以令,所以,帶入曲線方程得切點(diǎn)坐標(biāo)為,所以切線方程為,化簡得.故選:A.4、C【解析】設(shè),用表示出,求得的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)求得當(dāng)時(shí),取得最小值,從而求得點(diǎn)的坐標(biāo).【詳解】設(shè),則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當(dāng)λ=時(shí),取得最小值,此時(shí)==,即點(diǎn)Q的坐標(biāo)為.故選:C5、A【解析】利用正弦定理,可直接求出的值.【詳解】在中,由正弦定理得,所以,故選A.【點(diǎn)睛】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計(jì)算能力,屬于基礎(chǔ)題6、C【解析】分別求得的真假性,從而確定正確答案.【詳解】對(duì)于,由于,所以為假命題,為真命題.對(duì)于,在三角形中,,由正弦定理得,所以為真命題,為假命題.所以為真命題,、、為假命題.故選:C7、C【解析】設(shè),,,利用結(jié)合數(shù)量積的運(yùn)算即可得到答案.【詳解】設(shè),,,由已知,得,,,,所以,所以.故選:C8、B【解析】可以看作點(diǎn)到直線與直線距離之和的倍,的取值與,無關(guān),這個(gè)距離之和與點(diǎn)在圓上的位置無關(guān),圓在兩直線內(nèi)部,則,的距離為,則,,對(duì)于①,當(dāng)時(shí),r有最大值1,得出結(jié)論;對(duì)于②在r取最大值時(shí),則點(diǎn)的軌跡是一條平行與,的直線,得出結(jié)論;對(duì)于③當(dāng)時(shí),則得出結(jié)論.【詳解】設(shè),故可以看作點(diǎn)到直線與直線距離之和的倍,的取值與,無關(guān),這個(gè)距離之和與點(diǎn)在圓上的位置無關(guān),可知直線平移時(shí),點(diǎn)與直線,的距離之和均為,的距離,即此時(shí)圓在兩直線內(nèi)部,,的距離為,則,對(duì)于①,當(dāng)時(shí),r有最大值1,正確;對(duì)于②在r取最大值時(shí),則點(diǎn)的軌跡是一條平行與,的直線,正確;對(duì)于③當(dāng)時(shí),則即,解得或,故錯(cuò)誤.故正確結(jié)論有2個(gè),故選:B.9、A【解析】根據(jù)兩圓半徑和、差、圓心距之間的大小關(guān)系進(jìn)行判斷即可.【詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因?yàn)閮蓤A的圓心距為,兩圓的半徑和為,所以兩圓的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A10、B【解析】分析可知當(dāng)時(shí),最大,計(jì)算出、,進(jìn)而可計(jì)算得出四邊形(為坐標(biāo)原點(diǎn))面積.【詳解】圓的圓心為坐標(biāo)原點(diǎn),連接、、,則,設(shè),則,,則,當(dāng)取最小值時(shí),,此時(shí),,,,故,此時(shí),.故選:B.11、D【解析】根據(jù)雙曲線的性質(zhì)求解即可.【詳解】雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.12、A【解析】由三角形內(nèi)角及正弦函數(shù)的性質(zhì)判斷、的真假,應(yīng)用換元法令,結(jié)合對(duì)勾函數(shù)的性質(zhì)確定的值域即知、的真假,根據(jù)各選項(xiàng)復(fù)合命題判斷真假即可.【詳解】由且,可得或,故為假命題,為真命題;令,又,則,故,∵在上遞減,∴,故的最大值為.∴為真命題,為假命題;∴為真,為假,為假,為假.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可知為直角三角形,求出外接圓的半徑,可求出球的半徑,然后求球的表面積.【詳解】由題意,,,,則,可知,所以外接圓的半徑為,因?yàn)榍蛐牡狡矫娴木嚯x為,所以球的半徑為:,所以球的表面積為:.故答案為:.14、【解析】根據(jù)雙曲線的方程求出,再求焦距的值.【詳解】因?yàn)殡p曲線方程為,所以,.雙曲線的焦距為.故答案為:.15、####【解析】根據(jù)題意,求得點(diǎn)以及拋物線焦點(diǎn)的坐標(biāo),即可求得所在直線方程,聯(lián)立其與拋物線方程,求得點(diǎn)的坐標(biāo),即可求得.【詳解】因?yàn)榻?jīng)過點(diǎn)一束平行于C對(duì)稱軸的光線交拋物線于點(diǎn),故對(duì),令,則可得,也即的坐標(biāo)為,又拋物線的焦點(diǎn)的坐標(biāo)為,故可得直線方程為,聯(lián)立拋物線方程可得:,,解得或,將代入,可得,即的坐標(biāo)為,則.故答案為:.16、【解析】根據(jù)導(dǎo)數(shù)的定義求解即可【詳解】由,得,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由題設(shè)可得,結(jié)合向量的共線坐標(biāo)表示求的坐標(biāo);(2)向量的坐標(biāo)運(yùn)算求邊長,由余弦定理求,進(jìn)而求其正弦值,再應(yīng)用三角形面積公式求面積.【小問1詳解】由題設(shè),,令,則,∴,可得,故.【小問2詳解】由(1),,,則,又,則,∴平行四邊形的面積.18、(1)(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),根據(jù)題意結(jié)合導(dǎo)數(shù)的幾何意義列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,從而,令,利用導(dǎo)數(shù)求出函數(shù)的最小值,即可求得實(shí)數(shù)的取值范圍【小問1詳解】解:,因?yàn)楹瘮?shù)的圖象在點(diǎn)處的切線與直線平行,所以,解得;【小問2詳解】解:在上恒成立,即在上恒成立,,,令,則,當(dāng)時(shí),;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減,有上單調(diào)遞增,,,即實(shí)數(shù)的取值范圍是19、(1)2(2)(3)證明見詳解【解析】(1)用兩點(diǎn)間的距離公式和三角形的面積公式,結(jié)合已知直接可解;(2)根據(jù)中點(diǎn)坐標(biāo)公式,結(jié)合(1)中結(jié)論可得;(3)要證,只需證和的中點(diǎn)重合,直接或利用韋達(dá)定理求出中點(diǎn)橫坐標(biāo),證明其相等即可.【小問1詳解】記直線的傾斜角為,則,易得所以因?yàn)椋裕淼茫骸拘?詳解】設(shè)點(diǎn)M的坐標(biāo)為,則即,由(1)知,所以,即【小問3詳解】要證,只需證和的中點(diǎn)重合,記D,E,F(xiàn),G的橫坐標(biāo)分別為,易知直線的斜率(當(dāng)時(shí)與漸近線平行或重合,此時(shí)與雙曲線最多一個(gè)交點(diǎn))則解方程組,得解方程組,得將代入,得所以因?yàn)樗运院偷闹悬c(diǎn)的橫坐標(biāo)相等,所以和的中點(diǎn)重合,記其中點(diǎn)為N,則有,即20、(1)(2)【解析】(1)由題意得解方程組求出,從而可求出數(shù)列的通項(xiàng)公式,(2)因?yàn)槭枪葹榈牡缺葦?shù)列,又,,所以,從而可得,然后利用分組求和法求解即可【小問1詳解】設(shè)等差數(shù)列的公差為.由題意得解得,.所以.【小問2詳解】因?yàn)槭枪葹榈牡缺葦?shù)列,又,,所以,所以.所以.21、(1)(2)【解析】(1)連接,由,利用橢圓的定義求解;(2)設(shè)點(diǎn),,直線的方程為,與橢圓聯(lián)立,結(jié)合韋達(dá)定理,利用等面積法求解.【小問1詳解】解:連接,由題意知:,,即的軌跡為橢圓,其中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 西藥批發(fā)中的電子商務(wù)平臺(tái)建設(shè)考核試卷
- 草原馬術(shù)運(yùn)動(dòng)考核試卷
- 聚噻吩纖維在智能紡織品的應(yīng)用考核試卷
- 融資租賃行業(yè)服務(wù)創(chuàng)新與客戶體驗(yàn)考核試卷
- 谷物儲(chǔ)存的溫濕度調(diào)控考核試卷
- 拼多多平臺(tái)店鋪內(nèi)容營銷流量引入與品牌曝光合同
- 數(shù)字音樂平臺(tái)影視插曲版權(quán)合作分成合同
- 獨(dú)家授權(quán)網(wǎng)紅奶茶區(qū)域代理銷售服務(wù)合同
- 農(nóng)業(yè)園區(qū)氣象傳感器租賃及數(shù)據(jù)分析服務(wù)合同
- 工業(yè)廢水回用與清潔生產(chǎn)合作協(xié)議
- 地第十一章《極地地區(qū)》教學(xué)設(shè)計(jì)-2024-2025學(xué)年七年級(jí)地理下冊(人教版2024)
- 2025年BIM技術(shù)在工程項(xiàng)目風(fēng)險(xiǎn)管理中的應(yīng)用研究報(bào)告
- 山東省煙臺(tái)市、德州市、東營市三市東營2025年高考適應(yīng)性考試煙臺(tái)德州東營二模英語試卷+答案
- 2025年共青團(tuán)入團(tuán)考試測試題庫及答案
- 2025年上海市16區(qū)初三語文一模試題匯編之古詩文閱讀(學(xué)生版)
- 人工挖孔樁計(jì)算書及相關(guān)圖紙
- 土石壩填筑的施工方法
- 【高中化學(xué)會(huì)考】山西省普通高中畢業(yè)會(huì)考化學(xué)試題樣題
- 2023高考地理高三一輪復(fù)習(xí)教學(xué)計(jì)劃和備考策略
- 2022年虹口區(qū)事業(yè)單位公開招聘面試考官練習(xí)試題附答案
- Java程序設(shè)計(jì)項(xiàng)目教程(第二版)教學(xué)課件匯總完整版電子教案
評(píng)論
0/150
提交評(píng)論