




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江蘇省鎮江市重點名校高二上數學期末統考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知空間向量,,,下列命題中正確的個數是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對任意一個空間向量,存在唯一有序實數組,使得;④若,不共線,向量,則可以構成空間的一個基底.A.0 B.1C.2 D.32.等比數列的前項和為,若,則()A. B.8C.1或 D.或3.已知函數,則()A. B.C. D.4.雙曲線的漸近線方程為()A. B.C. D.5.等比數列的第4項與第6項分別為12和48,則公比的值為()A. B.2C.或2 D.或6.已知數列滿足,在任意相鄰兩項與(k=1,2,…)之間插入個2,使它們和原數列的項構成一個新的數列.記為數列的前n項和,則的值為()A.162 B.163C.164 D.1657.直線在y軸上的截距是A. B.C. D.8.如圖,是對某位同學一學期次體育測試成績(單位:分)進行統計得到的散點圖,關于這位同學的成績分析,下列結論錯誤的是()A.該同學的體育測試成績總的趨勢是在逐步提高,且次測試成績的極差超過分B.該同學次測試成績的眾數是分C.該同學次測試成績的中位數是分D.該同學次測試成績與測試次數具有相關性,且呈正相關9.已知三棱柱的所有棱長均為2,平面,則異面直線,所成角的余弦值為()A. B.C. D.10.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A B.C. D.11.已知雙曲線的兩個焦點為,,是此雙曲線上的一點,且滿足,,則該雙曲線的方程是()A. B.C. D.12.從某個角度觀察籃球(如圖1),可以得到一個對稱的平面圖形,如圖2所示,籃球的外輪形為圓O,將籃球表面的粘合線看成坐標軸和雙曲線,若坐標軸和雙曲線與圓O的交點將圓O的周長八等分,AB=BC=CD,則該雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線l過拋物線的焦點F,與拋物線交于A,B兩點,與其準線交于點C,若,則直線l的斜率為______.14.將參加冬季越野跑的名選手編號為:,采用系統抽樣方法抽取一個容量為的樣本,把編號分為組后,第一組的到這個編號中隨機抽得的號碼為,這名選手穿著三種顏色的衣服,從到穿紅色衣服,從到穿白色衣服,從到穿黃色衣服,則抽到穿白色衣服的選手人數為__________15.已知實數滿足,則的取值范圍是____________16.數學家歐拉年在其所著的《三角形幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線,已知的頂點、,其歐拉線的方程為,則的外接圓方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列是遞增的等比數列,滿足,(1)求數列的通項公式;(2)若,求數列的前n項和18.(12分)已知拋物線的方程為,點,過點的直線交拋物線于,兩點(1)是否為定值?若是,求出該定值;若不是,說明理由;(2)若點是直線上的動點,且,求面積的最小值19.(12分)已知圓M過C(1,﹣1),D(﹣1,1)兩點,且圓心M在x+y﹣2=0上.(1)求圓M的方程;(2)設P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.20.(12分)平面直角坐標系中,曲線與坐標軸交點都在圓上.(1)求圓的方程;(2)圓與直線交于,兩點,在圓上是否存在一點,使得四邊形為菱形?若存在,求出此時直線的方程;若不存在,說明理由.21.(12分)已知.(1)討論的單調性;(2)當有最大值,且最大值大于時,求取值范圍.22.(10分)如圖,在四棱錐P-ABCD中,底面ABCD是一個直角梯形,其中∠BAD=90°,AB∥DC,PA⊥底面ABCD,AB=AD=PA=2,DC=1,點M和點N分別為PA和PC的中點(1)證明:直線DM∥平面PBC;(2)求直線BM和平面BDN所成角的余弦值;(3)求二面角M-BD-N正弦值;(4)求點P到平面DBN距離;(5)設點N在平面BDM內的射影為點H,求線段HA的長
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯誤;若非零向量共面,則向量可以在一個與組成的平面平行的平面上,故②錯誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個基底,故④錯誤;故選:C.2、C【解析】根據等比數列的前項和公式及等比數列通項公式即可求解.【詳解】設等比數列的公比為,則因為,所以,即,解得或,所以或.故選:C.3、B【解析】求出,代值計算可得的值.【詳解】因為,則,故.故選:B.4、A【解析】直接求出,,進而求出漸近線方程.【詳解】中,,,所以漸近線方程為,故.故選:A5、C【解析】根據等比數列的通項公式計算可得;詳解】解:依題意、,所以,即,所以;故選:C6、C【解析】確定數列的前70項含有的前6項和64個2,從而求出前70項和.【詳解】,其中之間插入2個2,之間插入4個2,之間插入8個2,之間插入16個2,之間插入32個2,之間插入64個2,由于,,故數列的前70項含有的前6項和64個2,故故選:C7、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.8、C【解析】根據給定的散點圖,逐一分析各個選項即可判斷作答.【詳解】對于A,由散點圖知,8次測試成績總體是依次增大,極差為,A正確;對于B,散點圖中8個數據的眾數是48,B正確;對于C,散點圖中的8個數由小到大排列,最中間兩個數都是48,則次測試成績的中位數是分,C不正確;對于D,散點圖中8個點落在某條斜向上的直線附近,則次測試成績與測試次數具有相關性,且呈正相關,D正確.故選:C9、A【解析】建立空間直角坐標系,利用向量法求解【詳解】以為坐標原點,平面內過點且垂直于的直線為軸,所在直線為軸,所在直線為軸建立空間直角坐標系,如圖所示,則,,,,∴,,∴,∴異面直線,所成角的余弦值為.故選:A10、B【解析】根據得到三角形為等腰三角形,然后結合雙曲線的定義得到,設,進而作,得出,由此求出結果【詳解】因為,所以,即所以,由雙曲線的定義,知,設,則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B11、A【解析】由,可得進一步求出,由此得到,則該雙曲線的方程可求【詳解】,即,則.即,則該雙曲線的方程是:故選:A【點睛】方法點睛:求圓錐曲線的方程,常用待定系數法,先定式(根據已知確定焦點所在的坐標軸,設出曲線的方程),再定式(根據已知建立方程組解方程組得解).12、D【解析】設出雙曲線方程,通過做標準品和雙曲線與圓O的交點將圓的周長八等分,且AB=BC=CD,推出點在雙曲線上,然后求出離心率即可.【詳解】設雙曲線的方程為,則,因為AB=BC=CD,所以,所以,因為坐標軸和雙曲線與圓O的交點將圓O的周長八等分,所以在雙曲線上,代入可得,解得,所以雙曲線的離心率為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線方程求出焦點坐標與準線方程,設直線為,、,即可得到的坐標,再聯立直線與拋物線方程,消元列出韋達定理,表示出、的坐標,根據得到方程,求出,即可得解;【詳解】解:拋物線方程為,則焦點,準線為,設直線為,、,則,由,消去得,所以,,則,,因為,所以,所以,所以,解得,所以,即直線為,所以直線的斜率為;故答案為:14、【解析】,所以抽到穿白色衣服的選手號碼為,共15、【解析】去絕對值分別列出每個象限解析式,數形結合利用距離求解范圍.【詳解】當,表示橢圓第一象限部分;當,表示雙曲線第四象限部分;當,表示雙曲線第二象限部分;當,不表示任何圖形;以及兩點,作出大致圖象如圖:曲線上的點到的距離為,根據雙曲線方程可得第二四象限雙曲線漸近線方程都是,與距離為2,曲線二四象限上的點到的距離為小于且無限接近2,考慮曲線第一象限的任意點設為到的距離,當時取等號,所以,則的取值范圍是故答案為:16、【解析】求出線段的垂直平分線方程,與歐拉線方程聯立,求出的外接圓圓心坐標,并求出外接圓的半徑,由此可得出的外接圓方程.【詳解】直線的斜率為,線段的中點為,所以,線段的垂直平分線的斜率為,則線段垂直平分線方程為,即,聯立,解得,即的外心為,所以,的外接圓的半徑為,因此,的外接圓方程為.故答案為:.【點睛】方法點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關圓的一些常用性質和定理如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線;(2)待定系數法:根據條件設出圓的方程,再由題目給出的條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數,所以應該有三個獨立等式三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由等比數列的通項公式計算基本量從而得出的通項公式;(2)由(1)可得,再由裂項相消法求和即可.【小問1詳解】設等比數列的公比為q,所以有,,聯立兩式解得或又因為數列是遞增的等比數列,所以,所以數列的通項公式為;【小問2詳解】∵,∴,∴18、(1)是,;(2)【解析】(1)由題意設出所在直線方程,與拋物線方程聯立,化為關于的一元二次方程,由根與系數的關系即可求得為定值;(2)當的斜率為0時,求得三角形的面積為;當的斜率不為0時,由弦長公式求解,再由點到直線的距離公式求到的距離,代入三角形面積公式,利用函數單調性可得三角形的面積大于,由此可得面積的最小值【詳解】(1)由題意知,直線斜率存在,不妨設其方程為,聯立拋物線的方程可得,設,,則,,所以,,所以,所以是定值(2)當直線的斜率為0時,,又,,此時當直線的斜率不力0時,,又因為,且直線的斜率不為0,所以,即,所以點到直線的距離,此時,因為,所以,綜上,面積的最小值為19、(1);(2).【解析】(1)設圓的方程為:,由已知列出方程組,解之可得圓的方程;(2)由已知得四邊形的面積為,即有,又有.因此要求的最小值,只需求的最小值即可,根據點到直線的距離公式可求得答案.【詳解】解:(1)設圓方程為:,根據題意得,故所求圓M的方程為:;(2)如圖,四邊形的面積為,即又,所以,而,即.因此要求的最小值,只需求的最小值即可,的最小值即為點到直線的距離所以,四邊形面積的最小值為.20、(1);(2)存在,直線方程為或.【解析】(1)利用待定系數法即求;(2)利用直線與圓的位置關系可得,然后利用菱形的性質可得圓心到直線的距離,即得.【小問1詳解】曲線與軸的交點為,與軸的交點為,,設圓的方程為,則,解得.∴圓的方程為;【小問2詳解】∵圓與直線交于,兩點,圓化為,圓心坐標為,半徑為.∴圓心到直線的距離,解得.假設存在點,使得四邊形為菱形,則與互相平分,∴圓心到直線的距離,即,解得,經驗證滿足條件.∴存在點,使得四邊形為菱形,此時的直線方程為或.21、(1)時,在是單調遞增;時,在單調遞增,在單調遞減.(2).【解析】(Ⅰ)由,可分,兩種情況來討論;(II)由(I)知當時在無最大值,當時最大值為因此.令,則在是增函數,當時,,當時,因此a的取值范圍是.試題解析:(Ⅰ)的定義域為,,若,則,在是單調遞增;若,則當時,當時,所以在單調遞增,在單調遞減.(Ⅱ)由(Ⅰ)知當時在無最大值,當時在取得最大值,最大值為因此.令,則在是增函數,,于是,當時,,當時,因此a取值范圍是.考點:本題主要考查導數在研究函數性質方面的應用及分類討論思想.22、(1)證明見解析(2)(3)(4)(5)【解析】(1)以為原點,建立空間直角坐標系,利用向量法,證明與平面的法向量垂直,從而證明直線平面(2)求出平面的法向量,利用向量法,求出直線和平面所成角的余弦值(3)求出平面的法向量和平面的法向量,利用向量法,求出二面角的正弦值(4)求出的坐標,再求出平面的法向量,利用向量法,求出點到平面的距離;(5)設點在平面內的射影為點,從而表示出的坐標,求出到平面的距離,列出方程組,求出點坐標,從
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建省三明市梅列區重點名校2024屆中考三模數學試題含解析
- 共享農業體驗園農業科技示范與推廣策略報告
- 古書院礦開展“人人都是班組長”活動總結模版
- 區塊鏈在醫藥供應鏈中的應用與挑戰
- 小學二年級第一學期語文教學工作總結模版
- 區塊鏈技術解析理解分布式賬本技術的價值
- 醫患溝通平臺在醫療APP中的用戶體驗提升實踐
- 醫培教育的新方向遠程實時監控與效果評估
- 如何寫年度工作總結及年度工作總結模版
- 智慧產業數字化轉型創新園區可行性研究報告
- 風險告知卡(激光切割機)
- 茶館劇本(三幕話劇)
- 四年級漢字聽寫詞庫
- 新型建筑材料在高層建筑中的應用,建筑材料論文
- GB/T 19073-2008風力發電機組齒輪箱
- HAY-勝任素質模型構建與應用完整版
- 醫院硬式內鏡清洗消毒技術規范(2019年版)
- 最新安全生產管理教材電子版
- (完整版)耳鼻喉科操作規程
- 精選芭蕾舞男女演員之間的潛規則匯總
- 《中華傳統文化》第11課戲曲-教學教案
評論
0/150
提交評論