2025屆山東省泰安市新泰二中高二數學第一學期期末質量跟蹤監視試題含解析_第1頁
2025屆山東省泰安市新泰二中高二數學第一學期期末質量跟蹤監視試題含解析_第2頁
2025屆山東省泰安市新泰二中高二數學第一學期期末質量跟蹤監視試題含解析_第3頁
2025屆山東省泰安市新泰二中高二數學第一學期期末質量跟蹤監視試題含解析_第4頁
2025屆山東省泰安市新泰二中高二數學第一學期期末質量跟蹤監視試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省泰安市新泰二中高二數學第一學期期末質量跟蹤監視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知動點滿足,則動點的軌跡是()A.橢圓 B.直線C.線段 D.圓2.如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A,B,交其準線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()A.y2=9x B.y2=6xC.y2=3x D.y2=x3.若雙曲線(,)的一條漸近線經過點,則雙曲線的離心率為()A. B.C. D.24.已知平面上兩點,則下列向量是直線的方向向量是()A. B.C. D.5.已知、、、是直線,、是平面,、、是點(、不重合),下列敘述錯誤的是()A.若,,,,則B.若,,,則C.若,,則D.若,,則6.在四面體OABC中,,,,則與AC所成角的大小為()A.30° B.60°C.120° D.150°7.考試停課復習期間,小王同學計劃將一天中的7節課全部用來復習4門不同的考試科目,每門科目復習1或2節課,則不同的復習安排方法有()種A.360 B.630C.2520 D.151208.已知是函數的導函數,則()A0 B.2C.4 D.69.已知a,b為不相等實數,記,則M與N的大小關系為()A. B.C. D.不確定10.與直線關于軸對稱的直線的方程為()A. B.C. D.11.拋物線有如下光學性質:平行于拋物線對稱軸的入射光線經拋物線反射后必過拋物線的焦點.已知拋物線的焦點為F,一條平行于y軸的光線從點射出,經過拋物線上的點A反射后,再經拋物線上的另一點B射出,則經點B反射后的反射光線必過點()A. B.C. D.12.執行如圖所示的程序框圖,如果輸入,那么輸出的a值為()A.3 B.27C.-9 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點分別為,若橢圓上的點P滿足軸,,則該橢圓的離心率為___________14.某公司青年、中年、老年員工的人數之比為10∶8∶7,從中抽取100名作為樣本,若每人被抽中的概率是0.2,則該公司青年員工的人數為__________15.已知點為橢圓上的動點,為圓的任意一條直徑,則的最大值是__________16.已知銳角的內角,,的對邊分別為,,,且.若,則外接圓面積的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列的前項的和為,,.(1)求數列的通項公式;(2)設,記數列的前項和,求使得恒成立時的最小正整數.18.(12分)如圖,正方形與梯形所在的平面互相垂直,,,|AB|=|AD|=2,|CD|=4,為的中點(1)求證:平面平面;(2)求二面角的正切值19.(12分)已知函數,從下列兩個條件中選擇一個使得數列{an}成等比數列.條件1:數列{f(an)}是首項為4,公比為2的等比數列;條件2:數列{f(an)}是首項為4,公差為2的等差數列.(1)求數列{an}的通項公式;(2)求數列的前n項和.20.(12分)如圖所示,第九屆亞洲機器人錦標賽VEX中國選拔賽永州賽區中,主辦方設計了一個矩形坐標場地ABCD(包含邊界和內部,A為坐標原點),AD長為10米,在AB邊上距離A點4米的F處放置一只電子狗,在距離A點2米的E處放置一個機器人,機器人行走速度為v,電子狗行走速度為,若電子狗和機器人在場地內沿直線方向同時到達場地內某點M,那么電子狗將被機器人捕獲,點M叫成功點.(1)求在這個矩形場地內成功點M的軌跡方程;(2)P為矩形場地AD邊上的一動點,若存在兩個成功點到直線FP的距離為,且直線FP與點M的軌跡沒有公共點,求P點橫坐標的取值范圍.21.(12分)已知橢圓C:的長軸長為,P是橢圓上異于頂點的一個動點,O為坐標原點,A為橢圓C的上頂點,Q為PA的中點,且直線PA與直線OQ的斜率之積恒為-2.(1)求橢圓C的方程;(2)若斜率為k且過上焦點F的直線l與橢圓C相交于M,N兩點,當點M,N到y軸距離之和最大時,求直線l的方程.22.(10分)如圖,在直三棱柱中,,E、F分別是、的中點(1)求證:平面;(2)求證:平面

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據兩點之間的距離公式的幾何意義即可判定出動點軌跡.【詳解】由題意可知表示動點到點和點的距離之和等于,又因為點和點的距離等于,所以動點的軌跡為線段.故選:2、C【解析】過點A,B分別作準線的垂線,交準線于點E,D,設|BF|=a,利用拋物線的定義和平行線的性質、直角三角形求解【詳解】如圖,過點A,B分別作準線的垂線,交準線于點E,D,設|BF|=a,則由已知得|BC|=2a,由拋物線定義得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因為|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,從而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此拋物線的方程為y2=3x,故選:C.3、A【解析】先求出漸近線方程,進而將點代入直線方程得到a,b關系,進而求出離心率.【詳解】由題意,雙曲線的漸近線方程為:,而一條漸近線過點,則,.故選:A.4、D【解析】由空間向量的坐標運算和空間向量平行的坐標表示,以及直線的方向向量的定義可得選項.【詳解】解:因為兩點,則,又因為與向量平行,所以直線的方向向量是,故選:D.5、D【解析】由公理2可判斷A選項;由公理3可判斷B選項;利用平行線的傳遞性可判斷C選項;直接判斷線線位置關系,可判斷D選項.【詳解】對于A選項,由公理2可知,若,,,,則,A對;對于B選項,由公理3可知,若,,,則,B對;對于C選項,由空間中平行線的傳遞性可知,若,,則,C對;對于D選項,若,,則與平行、相交或異面,D錯.故選:D.6、B【解析】以為空間的一個基底,求出空間向量求的夾角即可判斷作答.【詳解】在四面體OABC中,不共面,則,令,依題意,,設與AC所成角的大小為,則,而,解得,所以與AC所成角的大小為.故選:B7、C【解析】,先安排復習節的科目,然后安排其余科目,由此計算出不同的復習安排方法數.【詳解】第步,門科目選門,安排節課,方法數有種,第步,安排其余科目,每門科目節課,方法數有種,所以不同的復習安排方法有種.故選:C8、D【解析】由導數運算法則求出導函數,再計算導數值【詳解】由題意,,所以故選:D9、A【解析】利用作差法即可比較M與N的大小﹒【詳解】因為,又,所以,即故選:A10、D【解析】點關于x軸對稱,橫坐標不變,縱坐標互為相反數,據此即可求解.【詳解】設(x,y)是與直線關于軸對稱的直線上任意一點,則(x,-y)在上,故,∴與直線關于軸對稱的直線的方程為.故選:D.11、D【解析】求出、坐標可得直線的方程,與拋物線方程聯立求出,根據選項可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯立解得,所以,因為反射光線平行于y軸,根據選項可得D正確,故選:D12、B【解析】分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是利用循環累乘值,并判斷滿足時輸出的值【詳解】解:模擬執行程序框圖,可得,時,不滿足條件,;不滿足條件,;不滿足條件,;滿足條件,退出循環,輸出的值為27故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意分析為直角三角形,得到關于a、c的齊次式,即可求出離心率.【詳解】設,則.由橢圓的定義可知:,所以.所以因軸,所以為直角三角形,由勾股定理得:,即,即,所以離心率.故答案為:14、200【解析】先根據分層抽樣的方法計算出該單位青年職工應抽取的人數,進而算出青年職工的總人數.【詳解】由題意,從中抽取100名員工作為樣本,需要從該單位青年職工中抽取(人).因為每人被抽中的概率是0.2,所以青年職工共有(人).故答案:200.15、【解析】設點,則且,計算得出,再利用二次函數的基本性質即可求得的最大值.【詳解】解:圓的圓心為,半徑長為,設點,由點為橢圓上的動點,可得:且,由為圓的任意一條直徑可得:,,,,,當時,取得最大值,即.故答案為:.16、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范圍,再利用正弦定理求出外接圓的半徑,即可求出外接圓的面積;【詳解】解:因為,所以,解得或(舍去).又為銳角三角形,所以.因為,當且僅當時等號成立,所以.外接圓的半徑,故外接圓面積的最小值為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)1【解析】(1)先設設等差數列的公差為,由,列出方程組求出首項和公差即可;(2)由(1)先求出,再由裂項相消法求數列的前項和即可.【詳解】解:(1)設等差數列的公差為,因為,,所以解得所以數列的通項公式為.(2)由(1)可知∴,∴,∴,∴的最小正整數為1【點睛】本題主要考查等差數列的通項公式,以及裂項相消法求數列前項和的問題,熟記公式即可,屬于基礎題型.18、(1)見解析;(2).【解析】(1)證明BC⊥平面BDE即可;(2)以D為原點,DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標系D-xyz,求平面BMD和平面BCD的法向量,利用法向量的求二面角的余弦,再求正切﹒【小問1詳解】∵ADEF為正方形∴ED⊥AD又∵正方形ADEF與梯形ABCD所在的平面互相垂直,且ED?平面ADEF∴ED⊥平面ABCD∵BC?平面ABCD∴ED⊥BC在直角梯形ABCD中,|AB|=|AD|=2,|CD|=4,則,|BD|=2,在△BCD中,,∴BC⊥BD∵DE∩BD=D,DE與BD平面BDE,∴BC⊥平面BDE又∵BC?平面BEC∴平面BDE⊥平面BEC;【小問2詳解】由(1)知ED⊥平面ABCD∵CD平面ABCD,∴CD⊥ED,∴DA,DC,DE三線兩兩垂直,故以D為原點,DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標系D-xyz:則,則設為平面BDM的法向量,則,取,取平面BCD的法向量為,設二面角的大小為θ,則,∴.19、(1)(2)【解析】(1)根據所給的條件分別計算后即可判斷,再通過滿足題意的求出通項;(2)由(1)可得,再通過錯位相減法求和即可.【小問1詳解】若選擇條件1,則有,可得,不滿足題意;若選擇條件2,則有,可得,滿足題意,故.【小問2詳解】由(1)可得,所以………①因此有……….②①②可得,即,化簡得.20、(1)(2)【解析】(1)分別以為軸,建立平面直角坐標系,由題意,利用兩點間的距離公式可得答案.(2)由題意可得點的軌跡所在圓的圓心到直線的距離,點的軌跡與軸的交點到直線的距離,從而可得答案.【小問1詳解】分別以為軸,建立平面直角坐標系,則,設成功點,可得即,化簡得因為點需在矩形場地內,所以故所求軌跡方程為【小問2詳解】設,直線方程為直線FP與點M軌跡沒有公共點,則圓心到直線的距離大于依題意,動點需滿足兩個條件:點的軌跡所在圓的圓心到直線的距離即,解得②點的軌跡與軸的交點到直線的距離即,解得綜上所述,P點橫坐標的取值范圍是21、(1)(2)【解析】(1)設點,求出直線、直線的斜率相乘可得,結合可得答案;(2)設直線l的方程為與橢圓方程聯立,代入得,設,再利用基本不等式可得答案.【小問1詳解】由題意可得,,即,則,設點,∵Q為的中點,∴,∴直線斜率,直線的斜率,∴,又∵,∴,則,解得,∴橢圓C的方程為.【小問2詳解】由(1)知,設直線l的方程為,聯立化簡得,,設,則,易知M,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論