2025屆四川省攀枝花市屬高中數學高三第一學期期末檢測模擬試題含解析_第1頁
2025屆四川省攀枝花市屬高中數學高三第一學期期末檢測模擬試題含解析_第2頁
2025屆四川省攀枝花市屬高中數學高三第一學期期末檢測模擬試題含解析_第3頁
2025屆四川省攀枝花市屬高中數學高三第一學期期末檢測模擬試題含解析_第4頁
2025屆四川省攀枝花市屬高中數學高三第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆四川省攀枝花市屬高中數學高三第一學期期末檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數(,為自然對數的底數),定義在上的函數滿足,且當時,.若存在,且為函數的一個零點,則實數的取值范圍為()A. B. C. D.2.若函數在處取得極值2,則()A.-3 B.3 C.-2 D.23.已知定義在R上的偶函數滿足,當時,,函數(),則函數與函數的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.64.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.85.已知,,則()A. B. C.3 D.46.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.7.已知函數,,若成立,則的最小值是()A. B. C. D.8.的展開式中的系數為()A.-30 B.-40 C.40 D.509.已知函數的圖象如圖所示,則下列說法錯誤的是()A.函數在上單調遞減B.函數在上單調遞增C.函數的對稱中心是D.函數的對稱軸是10.記個兩兩無交集的區間的并集為階區間如為2階區間,設函數,則不等式的解集為()A.2階區間 B.3階區間 C.4階區間 D.5階區間11.已知是過拋物線焦點的弦,是原點,則()A.-2 B.-4 C.3 D.-312.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知多項式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,則a4=________,a5=________.14.在的二項展開式中,所有項的系數之和為1024,則展開式常數項的值等于_______.15.設集合,,則____________.16.函數的單調增區間為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)解不等式;(2)若函數存在零點,求的求值范圍.18.(12分)在平面直角坐標系中,將曲線(為參數)通過伸縮變換,得到曲線,設直線(為參數)與曲線相交于不同兩點,.(1)若,求線段的中點的坐標;(2)設點,若,求直線的斜率.19.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.證明:;設,點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.20.(12分)在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數方程為(t為參數),曲線C的極坐標方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C交于M,N兩點,求△MON的面積.21.(12分)已知數列的前項和為,且點在函數的圖像上;(1)求數列的通項公式;(2)設數列滿足:,,求的通項公式;(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數的取值范圍;22.(10分)已知函數.(1)當時,解關于x的不等式;(2)當時,若對任意實數,都成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先構造函數,由題意判斷出函數的奇偶性,再對函數求導,判斷其單調性,進而可求出結果.【詳解】構造函數,因為,所以,所以為奇函數,當時,,所以在上單調遞減,所以在R上單調遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數的一個零點,所以在時有一個零點因為當時,,所以函數在時單調遞減,由選項知,,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.【點睛】本題主要考查函數與方程的綜合問題,難度較大.2、A【解析】

對函數求導,可得,即可求出,進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數的導數與極值,考查了學生的運算求解能力,屬于基礎題.3、B【解析】

由函數的性質可得:的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,由函數圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【詳解】由偶函數滿足,可得的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,函數的圖像與函數()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【點睛】本題主要考查了函數的性質,考查了數形結合的思想,掌握函數的性質是解題的關鍵,屬于中檔題.4、A【解析】

依題意可得,再根據離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題.5、A【解析】

根據復數相等的特征,求出和,再利用復數的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數的特征和復數的模,屬于基礎題.6、D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數取得最大值,最大值為3;當直線過點時,目標函數取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規劃.7、A【解析】分析:設,則,把用表示,然后令,由導數求得的最小值.詳解:設,則,,,∴,令,則,,∴是上的增函數,又,∴當時,,當時,,即在上單調遞減,在上單調遞增,是極小值也是最小值,,∴的最小值是.故選A.點睛:本題易錯選B,利用導數法求函數的最值,解題時學生可能不會將其中求的最小值問題,通過構造新函數,轉化為求函數的最小值問題,另外通過二次求導,確定函數的單調區間也很容易出錯.8、C【解析】

先寫出的通項公式,再根據的產生過程,即可求得.【詳解】對二項式,其通項公式為的展開式中的系數是展開式中的系數與的系數之和.令,可得的系數為;令,可得的系數為;故的展開式中的系數為.故選:C.【點睛】本題考查二項展開式中某一項系數的求解,關鍵是對通項公式的熟練使用,屬基礎題.9、B【解析】

根據圖象求得函數的解析式,結合余弦函數的單調性與對稱性逐項判斷即可.【詳解】由圖象可得,函數的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數在上單調遞減,當時,函數在上單調遞減,故A正確;令,得,故函數在上單調遞增.當時,函數在上單調遞增,故B錯誤;令,得,故函數的對稱中心是,故C正確;令,得,故函數的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數的解析式,同時也考查了余弦型函數的單調性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.10、D【解析】

可判斷函數為奇函數,先討論當且時的導數情況,再畫出函數大致圖形,將所求區間端點值分別看作對應常函數,再由圖形確定具體自變量范圍即可求解【詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變為,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區間.故選:D【點睛】本題考查由函數的奇偶性,單調性求解對應自變量范圍,導數法研究函數增減性,數形結合思想,轉化與化歸思想,屬于難題11、D【解析】

設,,設:,聯立方程得到,計算得到答案.【詳解】設,,故.易知直線斜率不為,設:,聯立方程,得到,故,故.故選:.【點睛】本題考查了拋物線中的向量的數量積,設直線為可以簡化運算,是解題的關鍵.12、C【解析】

由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質的應用,其中解答中熟記雙曲線的幾何性質,準確運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、164【解析】

只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【詳解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;則a4=+2+=5+8+3=16.故答案為:16,4.【點睛】本題主要考查了多項式展開中的特定項的求解,可以用賦值法也可以用二項展開的通項公式求解,屬于中檔題.14、【解析】

利用展開式所有項系數的和得n=5,再利用二項式展開式的通項公式,求得展開式中的常數項.【詳解】因為的二項展開式中,所有項的系數之和為4n=1024,n=5,故的展開式的通項公式為Tr+1=C·35-r,令,解得r=4,可得常數項為T5=C·3=15,故填15.【點睛】本題主要考查了二項式定理的應用、二項式系數的性質,二項式展開式的通項公式,屬于中檔題.15、【解析】

先解不等式,再求交集的定義求解即可.【詳解】由題,因為,解得,即,則,故答案為:【點睛】本題考查集合的交集運算,考查解一元二次不等式.16、【解析】

先求出導數,再在定義域上考慮導數的符號為正時對應的的集合,從而可得函數的單調增區間.【詳解】函數的定義域為.,令,則,故函數的單調增區間為:.故答案為:.【點睛】本題考查導數在函數單調性中的應用,注意先考慮函數的定義域,再考慮導數在定義域上的符號,本題屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】

(1)通過討論的范圍,將絕對值符號去掉,轉化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數零點問題轉化為曲線交點問題解決,數形結合得到結果.【詳解】(1)有題不等式可化為,當時,原不等式可化為,解得;當時,原不等式可化為,解得,不滿足,舍去;當時,原不等式可化為,解得,所以不等式的解集為.(2)因為,所以若函數存在零點則可轉化為函數與的圖像存在交點,函數在上單調增,在上單調遞減,且.數形結合可知.【點睛】該題考查的是有關不等式的問題,涉及到的知識點有分類討論求絕對值不等式的解集,將零點問題轉化為曲線交點的問題來解決,數形結合思想的應用,屬于簡單題目.18、(1);(2).【解析】

(1)由l參數方程與橢圓方程聯立可得A、B兩點參數和,再利用M點的參數為A、B兩點參數和的一半即可求M的坐標;(2)利用直線參數方程的幾何意義得到,再利用計算即可,但要注意判別式還要大于0.【詳解】(1)由已知,曲線的參數方程為(為參數),其普通方程為,當時,將(為參數)代入得,設直線l上A、B兩點所對應的參數為,中點M所對應的參數為,則,所以的坐標為;(2)將代入得,則,因為即,所以,故,由得,所以.【點睛】本題考查了伸縮變換、參數方程與普通方程的互化、直線參數方程的幾何意義等知識,考查學生的計算能力,是一道中檔題.19、(1)見解析;(2)【解析】

(1)由平面平面的性質定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標原點建立空間直角坐標系,由空間向量法和異面直線與所成角的余弦值為,得點M的坐標,從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標原點建立如圖所示的空間直角坐標系,則,,,設,則,,得,,而,設平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【點睛】本題考查了線線垂直的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養和向量法的合理運用,屬于中檔題.20、(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)4【解析】

(1)將直線l參數方程中的消去,即可得直線l的普通方程,對曲線C的極坐標方程兩邊同時乘以,利用可得曲線C的直角坐標方程;(2)求出點到直線的距離,再求出的弦長,從而得出△MON的面積.【詳解】解:(1)由題意有,得,x+y=4,直線l的普通方程為x+y-4=0.因為ρ=4sin所以ρ=2sinθ+2cosθ,兩邊同時乘以得,ρ2=2ρsinθ+2ρcosθ,因為,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)∵原點O到直線l的距離直線l過圓C的圓心(,1),∴|MN|=2r=4,所以△MON的面積S=|MN|×d=4.【點睛】本題考查了直線與圓的極坐標方程與普通方程、參數方程與普通方程的互化知識,解題的關鍵是正確使用這一轉化公式,還考查了直線與圓的位置關系等知識.21、(1)(2)當n為偶數時,;當n為奇數時,.(3)【解析】

(1)根據,討論與兩種情況,即可求得數列的通項公式;(2)由(1)利用遞推公式及累加法,即可求得當n為奇數或偶數時的通項公式.也可利用數學歸納法,先猜想出通項公式,再用數學歸納法證明.(3)分類討論,當n為奇數或偶數時,分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當時,,當時,也滿

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論