




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
五十二圓的方程
(時間:45分鐘分值:90分)
【基礎落實練】
1.(5分X2024?南京模擬)方程/+儼+m+丹+b=0表示的曲線是以(-2,3)為圓心,4
為半徑的圓,則D,E,F的值分別為()
A.4,-6,3B.-4,6,3
C-4,6,-3D.4,-6,-3
【解析】選D.以(-2,3)為圓心,4為半徑的圓的標準方程為(x+2)2+63)2=16,
即x2+_y2+4x-6y-3=0,
所以D=4,E=-6,F=-3.
2.(5分)(2024?青島模擬)點P(a,10)與圓C(x-l)2+(y-l)2=2的位置關系是()
A.在圓外B.在圓上
C.在圓內D.與。的值有關
【解析】選A.圓C(x-l)2+(y-l)2=2的圓心半徑片",
因為|PC|=J(a-+(10-球=J(a-+81>痣所以點P(a,T0)在圓外.
3.(5分)圓心坐標為(-2,1),并經過點42廣2),則圓的標準方程為()
A.(x-2)2+(y-l)2=5
B.(x+2)2+(y-l)2=5
C.(x+2)2+(y+1)2=25
D.(x+2)2+&-1)2=25
【解析】選D.由題意可設圓的標準方程為:
(%+2)2+伊1)2=戶,因為點4(2,-2)在圓上,
所以戶=(2+2)2+(一2-1)2=25,所以圓的標準方程為(%+2)2+伊1)2=25.
4.(5分)若直線/:ax+如l=0(a>0,b>0)平分圓C:x2+y2-2x-4y^0的周長,則ab的取值
范圍是()
A.g+8)B.(0,j]
C.(0。'D.g+8)
【解析】選B.由題意得,直線ax+by-l^Q過圓心(1,2),所以a+2b=1,
所以仍=1*2/蕓(2732](當且僅當q=2b,即4=|乃=1時,取"=”),
乙乙乙。乙1,
1
又4>0乃>0,所以abe(0,-].
【加練備選】
_____12—
若直線辦+2步2=05>0,6>0)始終平分圓爐+產以-2產8=0的周長,則方石的最
小值為________
【解析】由圓的性質可知,直線辦+2如-2=0是圓的直徑所在的直線方程.
因為圓x2+y2-4x-2y-S^0的標準方程為(%-2)2+(>1)2=13,
所以圓心(2,1)在直線。%+2勿-2=0上,
所以2tz+2Z?-2=0,BPa+b=\,
因為*=(*)伍+圻3年金3+2的,當且僅當a=m八,6=2時等號成立,
所以常的最小值為3+2也
答案:3+2避
5.(5分)侈選題)(2024?南昌模擬)已知ZU5C的三個頂點為4(-1,2)乃(2,1),。(3,4),
則下列關于A45C的外接圓圓M的說法正確的是()
A.圓M的圓心坐標為(1,3)
B.圓M的半徑為小
C.圓M關于直線x+y=0對稱
D?點(2,3)在圓M內
【解析】選ABD股&45C的外接圓圓M的方程為x2+y2+Dx+Ey+F^
0(£>2+£2_4Q0),
l+4-D+2E+F=0(D=-2
則4+1+2D+E+F=0,解得E=-6,
9+16+30+4E+F=0[F=5
所以ZU5C的外接圓圓M的方程為N+產2%_6y+5=0,即01)2+8-3)2=5.
故圓M的圓心坐標為(1,3),圓M的半徑為《,故A,B正確;
因為直線x+y=O不經過圓M的圓心(1,3),所以圓M不關于直線x+y=O對稱,故C
錯誤;
因為(2-1)2+(3-3)2=1<5,故點(2,3)在圓M內,故D正確.
6.(5分)侈選題)設圓的方程是(x-a)2+e+b)2=q2+62,其中q>0,b>0,下列說法正確的
是()
A.該圓的圓心為(凡份
B.該圓過原點
C.該圓與x軸相交于兩個不同點
D.該圓的半徑為a2+b2
【解析】選BC.因為圓的方程是
(x-a)2+(y+b)2^a2+b2(^a>0,b>0),
所以圓心坐標為(風力),半徑R+『,故A,D錯誤;
把原點坐標(0,0)代入圓的方程得方程左邊=(0-。)2+(0+與2=42+/=方程右邊,所以
該圓過原點,故B正確;
令產0得(x-a)2+z?2=X2_2ax+q2+62=q2+62,即/_2辦=0,解得%]=0m=2d所以該圓與
X軸有兩個交點,故C正確.
7.(5分)(2024?唐山模擬)若圓CN+儼+m+2尸0的圓心在直線%-2丁+1=0上,則C
的半徑為.
【解析】由圓的一般方程得圓心。的坐標為(冬-1),
代入直線x-2y+l=0中得(-%2x(-l)+l=0,解得D=6,
則半徑后后+225.
答案:盧。
8.(5分)(2024揭陽模擬)在某數學活動課上,數學教師把一塊三邊長分別為6,8,10
的三角板ABC放在直角坐標系中,則ZU5C外接圓的方程可以為.(寫
出其中一個符合條件的即可)
【解析】邊長分別為6,8,10的A45C為直角三角形,且外接圓的半徑為5,若將斜
邊的中點與坐標原點重合時,則圓心為(0,0),所以其外接圓方程可以為爐+y=25;
若將直角頂點與坐標原點重合,邊長為6的直角邊落在%軸的正半軸時,則圓心
為(3,±4),所以其外接圓方程可以為03)2+收4戶25;
若將直角頂點與坐標原點重合,邊長為6的直角邊落在x軸的負半軸時,則圓心
為(-3,±4),所以其外接圓方程可以為(%+3)2+收4)2=25;
若將直角頂點與坐標原點重合,邊長為8的直角邊落在x軸的正半軸時,則圓心
為(4,±3),所以其外接圓方程可以為(>4)2+收3)2=25;
若將直角頂點與坐標原點重合,邊長為8的直角邊落在%軸的負半軸時,則圓心
為(-4,±3),所以其外接圓方程可以為(%+4)2+什±3)2=25.
答案:/+y=25(答案不唯一)
9.(10分)已知圓心為C的圓經過點4(1,1)和點5(2,-2),且圓心C在直線/:x-y+l=0
上線段PQ的端點P的坐標是(5,0),端點。在圓C上運動,求線段PQ的中點M
的軌跡方程.
Q1
【解析】設點D為線段AB的中點,直線m為線段AB的垂直平分線,則。(工介
又左45=-3,所以左加,,
所以直線m的方程為x-3y-3=0.
由仁言之腿圓心。(-3,-2),
則半徑尸|G4|=J(_3_球+(_2_1,=5,
所以圓C的方程為(%+3)2+什+2)2=25.
設點MXJ),。。。,外),
因為點。的坐標為(5,0),
1%0+5
比=―,'%。=2%-5,
所以小。即
.y()=2y.
又點0aoM)在圓C:(x+3)2+(y+2)2=25上運動,所以(劭+3)2+仇+2)2=25,
即(2x-5+3)2+(2y+2)2=25.
整理得(+1)2+行1)2〉.
即所求線段PQ的中點M的軌跡方程為(%-1)2+8+1)2嚀.
【能力提升練】
10.(5分)(2024?海淀模擬)設三角形/5C是位于平面直角坐標系xOy的第一象限
中的一個不等邊三角形,該平面上的動點P滿足:即2+|尸CH
。4|2+0引2+0CF,已知動點P的軌跡是一個圓,則該圓的圓心位于三角形的
()
A.內心B.外心C.重心D.垂心
【解析】選C.設。(%/)4%1曲乃(%2y2),。(%3,為),
由17Ml2+|尸引2+|尸。|2=04|2+|。叫2+℃|2得:
(x-XiF+O為)2+(%-%2)2+6歹2)2+(%_%3)2+Oy3)2=%j+yj+%j+y"+y:,
展開整理得3爐+3儼-2(11+%2+%3)%-2&1+乃+為)產o.
111
所以|>#:1+%2+%3)]2+|>§&1+乃+乃)]2^[(%1+x2+%3)2+81+刀2口3)2].
-11
所以圓的圓心坐標為(§(%1+%2+%3)百&1+72+為)),為三角形ABC的重心.
11.(5分)(多選題)已知圓M與直線%+7+2=0相切于點4(0,-2),圓M被X軸所截得
的弦長為2,則下列結論正確的是()
A.圓M的圓心在定直線%子2=0上
B.圓M的面積的最大值為50TI
C.圓M的半徑的最小值為1
D.滿足條件的所有圓M的半徑之積為8
【解析】選AB.因為圓M與直線x+y+2=0相切于4(0,-2),
所以直線AM與直線x+y+2=0垂直,所以直線AM的斜率為1,則點M在直線
y=x-2上,即x-y-2^0上,故A正確;
設M(%-2),所以圓M的半徑『0%=出+(a-2+2)2="|仇
因為圓M被x軸截得的弦長為2,
所以2J/_(a_2)2=」J「2+4a_4=2,
解得a=-5或a=l.
當a=-5時,圓M的面積最大,為口2=50瓦,故B正確;
當。=1時,圓〃的半徑最小,為他,故C錯誤;
滿足條件的所有圓M的半徑之積為5"x"=10,故D錯誤.
12.(5分)(2024?鄭州模擬)如果圓(%-加)2+&_2加產產關于直線x+y-3=0對稱,則圓的
圓心坐標為.
【解析】由題意知圓的圓心坐標為(加,2加),圓心在直線x+y-3=0上,將圓心坐標
(冽,2加)代入即得加+2加-3=0,解得加=1,
所以圓心坐標為(1,2).
答案:(1,2)
13.(5分)(2024?昆明模擬)已知點4(-3,0)乃(3,0),。(-1,0),點。滿足悶|=2仍8],則點
P到點C距離的最大值為.
【解析】設尸(%少),
因為|P4|=2|PB|,
所以(%+3)2+儼=4[(%-3/+y2],
化簡得(%-5)2+產=16.
則點P的軌跡是以。(5,0)為圓心,半徑等于4的圓,
因為|CD|=6,故|PC|的最大值為|CD|+4=10.
答案:10
14.(10分)(2024?哈爾濱模擬)已知圓E經過點4(0,0),5(1,1),且圓E與y軸相切.
⑴求圓E的一般方程;
【解析】(D設圓的方程為爐+產+m+政+4。,
因為圓E過點4(0,0)乃(1,1),又跟丁軸相切,
所以圓E必在v軸右側,且跟y軸的切點為4(0,0),所以圓心的縱坐標為0,
FO
-,
1+1+D+F+FO-
以
日
所-Z
E1-
-力-
-O
2、
所以圓E的方程為爐+產2x=0.
⑵設。是圓E上的動點,點C的坐標為(4,0),求線段CP的中點M的軌跡方程.
【解析】⑵設M(w),則尸(2%-4,2頊
將P(2x-4,2y)代入x2+y2-2x=0得
(2x-4)2+(2y)2-2(2x-4)=0,
,521
整理得(%-2)+y2q
521
即線段CP的中點M的軌跡方程為(久-1)+儼4
15.(10分)(2024?郴州模擬)已
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年除澇排水設施管理服務項目發展計劃
- 2024年山東出版集團有限公司招聘考試真題
- 2024年廣東省企事業單位招聘考試真題
- 2024年從江縣中醫醫院招聘考試真題
- 《當代國際政治與經濟》模塊主觀題獨立成題的預測
- 信息技術大學生個人簡歷范文
- 2025年凝血分析儀器項目發展計劃
- 小學體育室家長參與計劃
- 2024-2025工廠安全培訓考試試題帶解析答案可打印
- 25年公司職工安全培訓考試試題【新題速遞】
- 養老院查房巡視管理制度
- 按摩店技師免責協議書
- 聲音與情緒管理
- 直播中控轉正述職報告
- 史寧中:義務教育數學課標(2022年版)解讀
- 中華人民共和國統計法
- 機電設備安裝與調試技術課件
- 高三小說復習之敘事技巧省公開課獲獎課件市賽課比賽一等獎課件
- 基于Simulink+DSP代碼生成的永磁電機控制 課件 第1-4章 DSP各模塊介紹-永磁同步電機的磁場定向控制技術
- 中國石油吉林職業技能鑒定中心鑒定經管員操作試題
- 軍事AI模型優化
評論
0/150
提交評論