




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省沈陽市大東區達標名校2022年中考數學模擬預測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.學校為創建“書香校園”購買了一批圖書.已知購買科普類圖書花費10000元,購買文學類圖書花費9000元,其中科普類圖書平均每本的價格比文學類圖書平均每本的價格貴5元,且購買科普書的數量比購買文學書的數量少100本.求科普類圖書平均每本的價格是多少元?若設科普類圖書平均每本的價格是x元,則可列方程為()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1002.下列四個實數中是無理數的是()A.2.5B.1033.某射擊選手10次射擊成績統計結果如下表,這10次成績的眾數、中位數分別是()成績(環)78910次數1432A.8、8 B.8、8.5 C.8、9 D.8、104.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm5.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數是()A.15° B.30° C.45° D.60°6.一次函數滿足,且隨的增大而減小,則此函數的圖象不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在函數y=中,自變量x的取值范圍是()A.x≥0 B.x≤0 C.x=0 D.任意實數8.比較4,,的大小,正確的是()A.4<< B.4<<C.<4< D.<<49.設x1,x2是一元二次方程x2﹣2x﹣3=0的兩根,則x12+x22=()A.6B.8C.10D.1210.如圖所示,在折紙活動中,小明制作了一張△ABC紙片,點D,E分別在邊AB,AC上,將△ABC沿著DE折疊壓平,A與A′重合,若∠A=70°,則∠1+∠2=()A.70° B.110° C.130° D.140°11.已知關于x的不等式ax<b的解為x>-2,則下列關于x的不等式中,解為x<2的是()A.ax+2<-b+2 B.–ax-1<b-1 C.ax>b D.12.如圖,點A、B、C都在⊙O上,若∠AOC=140°,則∠B的度數是()A.70° B.80° C.110° D.140°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一個斜面的坡度i=1:0.75,如果一個物體從斜面的底部沿著斜面方向前進了20米,那么這個物體在水平方向上前進了_____米.14.某書店把一本新書按標價的九折出售,仍可獲利20%,若該書的進價為21元,則標價為___________元.15.若關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數根,則m的值為______.16.如圖,的半徑為1,正六邊形內接于,則圖中陰影部分圖形的面積和為________(結果保留).17.拋物線y=2x2+4向左平移2個單位長度,得到新拋物線的表達式為_____.18.在直角坐標系中,坐標軸上到點P(﹣3,﹣4)的距離等于5的點的坐標是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,將等腰直角三角形紙片ABC對折,折痕為CD.展平后,再將點B折疊在邊AC上(不與A、C重合),折痕為EF,點B在AC上的對應點為M,設CD與EM交于點P,連接PF.已知BC=1.(1)若M為AC的中點,求CF的長;(2)隨著點M在邊AC上取不同的位置,①△PFM的形狀是否發生變化?請說明理由;②求△PFM的周長的取值范圍.20.(6分)某校為了創建書香校遠,計劃進一批圖書,經了解.文學書的單價比科普書的單價少20元,用800元購進的文學書本數與用1200元購進的科普書本數相等.文學書和科普書的單價分別是多少元?該校計劃用不超過5000元的費用購進一批文學書和科普書,問購進60本文學書后最多還能購進多少本科普書?21.(6分)已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.求證:AP=BQ;在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.22.(8分)在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;設EH=x,矩形EFGH的面積為S,求S與x的函數關系式,并求S的最大值.23.(8分)如圖①,在正方形ABCD中,點E與點F分別在線段AC、BC上,且四邊形DEFG是正方形.(1)試探究線段AE與CG的關系,并說明理由.(2)如圖②若將條件中的四邊形ABCD與四邊形DEFG由正方形改為矩形,AB=3,BC=1.①線段AE、CG在(1)中的關系仍然成立嗎?若成立,請證明,若不成立,請寫出你認為正確的關系,并說明理由.②當△CDE為等腰三角形時,求CG的長.24.(10分)某商場柜臺銷售每臺進價分別為160元、120元的、兩種型號的電器,下表是近兩周的銷售情況:銷售時段銷售數量銷售收入種型號種型號第一周3臺4臺1200元第二周5臺6臺1900元(進價、售價均保持不變,利潤=銷售收入—進貨成本)(1)求、兩種型號的電器的銷售單價;(2)若商場準備用不多于7500元的金額再采購這兩種型號的電器共50臺,求種型號的電器最多能采購多少臺?(3)在(2)中商場用不多于7500元采購這兩種型號的電器共50臺的條件下,商場銷售完這50臺電器能否實現利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.25.(10分)化簡:(x+7)(x-6)-(x-2)(x+1)26.(12分)閱讀材料:各類方程的解法求解一元一次方程,根據等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由于“去分母”可能產生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數學思想轉化,把未知轉化為已知.用“轉化”的數學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.問題:方程x3+x2-2x=0的解是x1=0,x2=,x3=;拓展:用“轉化”思想求方程的解;應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.27.(12分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.(1)求證:AC是△BDE的外接圓的切線;(2)若AD=23,AE=6,求EC的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】【分析】直接利用購買科普書的數量比購買文學書的數量少100本得出等式進而得出答案.【詳解】科普類圖書平均每本的價格是x元,則可列方程為:﹣=100,故選B.【點睛】本題考查了分式方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.2、C【解析】本題主要考查了無理數的定義.根據無理數的定義:無限不循環小數是無理數即可求解.解:A、2.5是有理數,故選項錯誤;B、103C、π是無理數,故選項正確;D、1.414是有理數,故選項錯誤.故選C.3、B【解析】
根據眾數和中位數的概念求解.【詳解】由表可知,8環出現次數最多,有4次,所以眾數為8環;這10個數據的中位數為第5、6個數據的平均數,即中位數為=8.5(環),故選:B.【點睛】本題考查了眾數和中位數的知識,一組數據中出現次數最多的數據叫做眾數;將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.4、D【解析】分析:根據垂徑定理得出OE的長,進而利用勾股定理得出BC的長,再利用相似三角形的判定和性質解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點睛:本題考查了垂徑定理,關鍵是根據垂徑定理得出OE的長.5、B【解析】
只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【點睛】本題考查圓周角定理,等邊三角形的判定等知識,解題的關鍵是學會利用數形結合的首先解決問題,屬于中考常考題型.6、A【解析】試題分析:根據y隨x的增大而減小得:k<0,又kb>0,則b<0,故此函數的圖象經過第二、三、四象限,即不經過第一象限.故選A.考點:一次函數圖象與系數的關系.7、C【解析】
當函數表達式是二次根式時,被開方數為非負數.據此可得.【詳解】解:根據題意知,
解得:x=0,
故選:C.【點睛】本題主要考查函數自變量的取值范圍,函數自變量的范圍一般從三個方面考慮:(1)當函數表達式是整式時,自變量可取全體實數;(2)當函數表達式是分式時,考慮分式的分母不能為0;(3)當函數表達式是二次根式時,被開方數為非負數.8、C【解析】
根據4=<且4=>進行比較【詳解】解:易得:4=<且4=>,所以<4<故選C.【點睛】本題主要考查開平方開立方運算。9、C【解析】試題分析:根據根與系數的關系得到x1+x2=2,x1?x2=﹣3,再變形x12+x22得到(x1+x2)2﹣2x1?x2,然后利用代入計算即可.解:∵一元二次方程x2﹣2x﹣3=0的兩根是x1、x2,∴x1+x2=2,x1?x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1?x2=22﹣2×(﹣3)=1.故選C.10、D【解析】∵四邊形ADA'E的內角和為(4-2)?180°=360°,而由折疊可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.11、B【解析】∵關于x的不等式ax<b的解為x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集為x<2的是B選項中的不等式.故選B.12、C【解析】分析:作對的圓周角∠APC,如圖,利用圓內接四邊形的性質得到∠P=40°,然后根據圓周角定理求∠AOC的度數.詳解:作對的圓周角∠APC,如圖,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故選:C.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】
直接根據題意得出直角邊的比值,即可表示出各邊長進而得出答案.【詳解】如圖所示:∵坡度i=1:0.75,∴AC:BC=1:0.75=4:3,∴設AC=4x,則BC=3x,∴AB==5x,∵AB=20m,∴5x=20,解得:x=4,故3x=1,故這個物體在水平方向上前進了1m.故答案為:1.【點睛】此題主要考查坡度的運用,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關系是.14、28【解析】設標價為x元,那么0.9x-21=21×20%,x=28.15、-1【解析】
根據關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數根可知△=0,求出m的取值即可.【詳解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案為-1.【點睛】本題考查的是根的判別式,即一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的兩個實數根;②當△=0時,方程有兩個相等的兩個實數根;③當△<0時,方程無實數根.16、.【解析】
連接OA,OB,OC,則根據正六邊形內接于可知陰影部分的面積等于扇形OAB的面積,計算出扇形OAB的面積即可.【詳解】解:如圖所示,連接OA,OB,OC,∵正六邊形內接于∴∠AOB=60°,四邊形OABC是菱形,∴AG=GC,OG=BG,∠AGO=∠BGC∴△AGO≌△BGC.∴△AGO的面積=△BGC的面積∵弓形DE的面積=弓形AB的面積∴陰影部分的面積=弓形DE的面積+△ABC的面積=弓形AB的面積+△AGB的面積+△BGC的面積=弓形AB的面積+△AGB的面積+△AGO的面積=扇形OAB的面積==故答案為.【點睛】本題考查了扇形的面積計算公式,利用數形結合進行轉化是解題的關鍵.17、y=2(x+2)2+1【解析】試題解析:∵二次函數解析式為y=2x2+1,∴頂點坐標(0,1)向左平移2個單位得到的點是(-2,1),可設新函數的解析式為y=2(x-h)2+k,代入頂點坐標得y=2(x+2)2+1,故答案為y=2(x+2)2+1.點睛:函數圖象的平移,用平移規律“左加右減,上加下減”直接代入函數解析式求得平移后的函數解析式.18、(0,0)或(0,﹣8)或(﹣6,0)【解析】
由P(﹣3,﹣4)可知,P到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經過原點分別與x軸、y軸交于另外一點,共有三個.【詳解】解:∵P(﹣3,﹣4)到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經過原點且分別交x軸、y軸于另外兩點(如圖所示),∴故坐標軸上到P點距離等于5的點有三個:(0,0)或(0,﹣8)或(﹣6,0).故答案是:(0,0)或(0,﹣8)或(﹣6,0).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)CF=;(2)①△PFM的形狀是等腰直角三角形,不會發生變化,理由見解析;②△PFM的周長滿足:2+2<(1+)y<1+1.【解析】
(1)由折疊的性質可知,FB=FM,設CF=x,則FB=FM=1﹣x,在Rt△CFM中,根據FM2=CF2+CM2,構建方程即可解決問題;(2)①△PFM的形狀是等腰直角三角形,想辦法證明△POF∽△MOC,可得∠PFO=∠MCO=15°,延長即可解決問題;②設FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周長=(1+)y,由2<y<1,可得結論.【詳解】(1)∵M為AC的中點,∴CM=AC=BC=2,由折疊的性質可知,FB=FM,設CF=x,則FB=FM=1﹣x,在Rt△CFM中,FM2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形狀是等腰直角三角形,不會發生變化,理由如下:由折疊的性質可知,∠PMF=∠B=15°,∵CD是中垂線,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴=,∴=,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=15°,∴△MPC∽△OFC,∴,∴,∴,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=15°,∴△PFM是等腰直角三角形;②∵△PFM是等腰直角三角形,設FM=y,由勾股定理可知:PF=PM=y,∴△PFM的周長=(1+)y,∵2<y<1,∴△PFM的周長滿足:2+2<(1+)y<1+1.【點睛】本題考查三角形綜合題、等腰直角三角形的性質和判定、翻折變換、相似三角形的判定和性質、勾股定理等知識,解題的關鍵是正確尋找相似三角形解決問題,學會利用參數解決問題,屬于中考常考題型.20、(1)文學書的單價為40元/本,科普書的單價為1元/本;(2)購進1本文學書后最多還能購進2本科普書.【解析】
(1)設文學書的單價為x元/本,則科普書的單價為(x+20)元/本,根據數量=總價÷單價結合用800元購進的文學書本數與用1200元購進的科普書本數相等,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設購進m本科普書,根據總價=文學書的單價×購進本數+科普書的單價×購進本數結合總價不超過5000元,即可得出關于m的一元一次不等式,解之取其中的最大整數值即可得出結論.【詳解】解:(1)設文學書的單價為x元/本,則科普書的單價為(x+20)元/本,依題意,得:800x解得:x=40,經檢驗,x=40是原分式方程的解,且符合題意,∴x+20=1.答:文學書的單價為40元/本,科普書的單價為1元/本.(2)設購進m本科普書,依題意,得:40×1+1m≤5000,解得:m≤431∵m為整數,∴m的最大值為2.答:購進1本文學書后最多還能購進2本科普書.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據各數量之間的關系,正確列出一元一次不等式.21、(1)證明見解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解析】試題分析:(1)利用AAS證明△AQB≌△DPA,可得AP=BQ;(2)根據AQ﹣AP=PQ和全等三角形的對應邊相等可寫出4對線段.試題解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于點Q,DP⊥AQ于點P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考點:(1)正方形;(2)全等三角形的判定與性質.22、(1);(2)1.【解析】
(1)根據相似三角形的對應線段(對應中線、對應角平分線、對應邊上的高)的比也等于相似比進行計算即可;(2)根據EH=KD=x,得出AK=12﹣x,EF=(12﹣x),再根據S=x(12﹣x)=﹣(x﹣6)2+1,可得當x=6時,S有最大值為1.【詳解】解:(1)∵△AEF∽△ABC,∴,∵邊BC長為18,高AD長為12,∴=;(2)∵EH=KD=x,∴AK=12﹣x,EF=(12﹣x),∴S=x(12﹣x)=﹣(x﹣6)2+1.當x=6時,S有最大值為1.【點睛】本題主要考查了相似三角形的判定與性質的綜合應用,解題時注意:確定一個二次函數的最值,首先看自變量的取值范圍,當自變量取全體實數時,其最值為拋物線頂點坐標的縱坐標.23、(1)AE=CG,AE⊥CG,理由見解析;(2)①位置關系保持不變,數量關系變為;理由見解析;②當△CDE為等腰三角形時,CG的長為或或.【解析】試題分析:證明≌即可得出結論.①位置關系保持不變,數量關系變為證明根據相似的性質即可得出.分成三種情況討論即可.試題解析:(1)理由是:如圖1,∵四邊形EFGD是正方形,∴∵四邊形ABCD是正方形,∴∴∴≌∴∵∴∴即(2)①位置關系保持不變,數量關系變為理由是:如圖2,連接EG、DF交于點O,連接OC,∵四邊形EFGD是矩形,∴Rt中,OG=OF,Rt中,∴∴D、E、F、C、G在以點O為圓心的圓上,∵∴DF為的直徑,∵∴EG也是的直徑,∴∠ECG=90°,即∴∵∴∵∴∴②由①知:∴設分三種情況:(i)當時,如圖3,過E作于H,則EH∥AD,∴∴由勾股定理得:∴(ii)當時,如圖1,過D作于H,∵∴∴∴∴∴(iii)當時,如圖5,∴∴綜上所述,當為等腰三角形時,CG的長為或或.點睛:兩組角對應,兩三角形相似.24、(1)A型電器銷售單價為200元,B型電器銷售單價150元;(2)最多能采購37臺;(3)方案一:采購A型36臺B型14臺;方案二:采購A型37臺B型13臺.【解析】
(1)設A、B兩種型號電器的銷售單價分別為x元、y元,根據3臺A型號4臺B型號的電器收入1200元,5臺A型號6臺B型號的電器收入1900元,列方程組求解;(2)設采購A種型號電器a臺,則采購B種型號電器(50?a)臺,根據金額不多余7500元,列不等式求解;(3)根據A型號的電器的進價和售價,B型號的電器的進價和售價,再根據一件的利潤乘以總的件數等于總利潤列出不等式,再進行求解即可得出答案.【詳解】解:(1)設A型電器銷售單價為x元,B型電器銷售單價y元,則,解得:,答:A型電器銷售單價為200元,B型電器銷售單價150元;(2)設A型電器采購a臺,則160a+120(50?a)≤7500,解得:a≤,則最多能采購37臺;(3)設A型電器采購a臺,依題意,得:(200?160)a+(150?120)(50?a)>1850,解得:a>35,則35<a≤,∵a是正整數,∴a=36或37
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CTIMSA 02-2019輪胎智能制造互聯網絡架構規范
- T/CSRME 026-2022地下洞室圍巖穩定性評估方法
- T/CSPSTC 120-2023公路智能化預制梁廠環形生產線技術規程
- T/CQAGS 3201-2023重慶好糧油壓榨菜籽油
- T/CNFMA B021-2022戶外林業機械以汽油機為動力的手持式挖樹機
- T/CNCA 029-2022基于掘錨一體機的煤巷快速掘進系統設計規范
- T/CIQA 57-2023進口剛果共和國茯苓藥材種植與采收技術規范
- T/CIIA 031-2022空間環境科學數據安全分級指南
- T/CHINABICYCLE 13-2022智能功率騎行臺
- T/CHIA 25-2022兒童營養與健康管理信息系統基本功能規范
- 暴雨天氣注意安全課件
- 供電公司隱患排查總結報告
- 感染性角膜病臨床診療專家共識課件
- 商業銀行業務與經營練習題
- 系統云遷移方案
- 2024年江銅集團招聘筆試參考題庫含答案解析
- 質檢員土建施工培訓課件
- 大熊貓調查表格三年級下冊
- 愚公移山英文 -中國故事英文版課件
- CISP-PTE認證培訓考試復習題庫(附答案)
- 初中班會 尊師重教主題教育班會 課件 (27張PPT)
評論
0/150
提交評論