




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年四川省成都市石室天府中學畢業升學考試模擬卷數學卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.從甲、乙、丙、丁四人中選一人參加詩詞大會比賽,經過三輪初賽,他們的平均成績都是86.5分,方差分別是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你認為派誰去參賽更合適()A.甲 B.乙 C.丙 D.丁2.若數a,b在數軸上的位置如圖示,則()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>03.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+4.解分式方程時,去分母后變形為A. B.C. D.5.下列說法:①平分弦的直徑垂直于弦;②在n次隨機實驗中,事件A出現m次,則事件A發生的頻率,就是事件A的概率;③各角相等的圓外切多邊形一定是正多邊形;④各角相等的圓內接多邊形一定是正多邊形;⑤若一個事件可能發生的結果共有n種,則每一種結果發生的可能性是.其中正確的個數()A.1 B.2 C.3 D.46.河堤橫斷面如圖所示,堤高BC=6米,迎水坡AB的坡比為1:,則AB的長為A.12米 B.4米 C.5米 D.6米7.如果三角形滿足一個角是另一個角的3倍,那么我們稱這個三角形為“智慧三角形”.下列各組數據中,能作為一個智慧三角形三邊長的一組是()A.1,2,3 B.1,1, C.1,1, D.1,2,8.下列計算正確的是()A.a6÷a2=a3 B.(﹣2)﹣1=2C.(﹣3x2)?2x3=﹣6x6 D.(π﹣3)0=19.如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在點A下方,點E是邊長為2、中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉一周,在此過程中DE的最小值為()A.3 B.4﹣ C.4 D.6﹣210.下列天氣預報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,李明從A點出發沿直線前進5米到達B點后向左旋轉的角度為α,再沿直線前進5米,到達點C后,又向左旋轉α角度,照這樣走下去,第一次回到出發地點時,他共走了45米,則每次旋轉的角度α為_____.12.如圖,在直角坐標系中,點A(2,0),點B(0,1),過點A的直線l垂直于線段AB,點P是直線l上一動點,過點P作PC⊥x軸,垂足為C,把△ACP沿AP翻折,使點C落在點D處,若以A,D,P為頂點的三角形與△ABP相似,則所有滿足此條件的點P的坐標為___________________________.13.實數,﹣3,,,0中的無理數是_____.14.如圖,⊙O的半徑為6,四邊形ABCD內接于⊙O,連接OB,OD,若∠BOD=∠BCD,則弧BD的長為________.15.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D是以點A為圓心4為半徑的圓上一點,連接BD,點M為BD中點,線段CM長度的最大值為_____.16.如圖,矩形OABC的邊OA,OC分別在軸、軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,B′和B分別對應),若AB=1,反比例函數的圖象恰好經過點A′,B,則的值為_________.17.如圖,在平面直角坐標系中,已知點A(1,1),以點O為旋轉中心,將點A逆時針旋轉到點B的位置,則的長為_____.三、解答題(共7小題,滿分69分)18.(10分)學了統計知識后,小紅就本班同學上學“喜歡的出行方式”進行了一次調查,圖(1)和圖(2)是她根據采集的數據繪制的兩幅不完整的統計圖,請根據圖中提供的信息解答以下問題:(1)補全條形統計圖,并計算出“騎車”部分所對應的圓心角的度數.(2)若由3名“喜歡乘車”的學生,1名“喜歡騎車”的學生組隊參加一項活動,現欲從中選出2人擔任組長(不分正副),求出2人都是“喜歡乘車”的學生的概率,(要求列表或畫樹狀圖)19.(5分)如圖,一次函數y=﹣12x+52的圖象與反比例函數y=(1)求反比例函數的解析式;(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.20.(8分)如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側),C為頂點,直線y=x+m經過點A,與y軸交于點D.求線段AD的長;平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′.若新拋物線經過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應的函數表達式.21.(10分)已知,關于x的一元二次方程(k﹣1)x2+x+3=0有實數根,求k的取值范圍.22.(10分)已知關于x的一元二次方程3x2﹣6x+1﹣k=0有實數根,k為負整數.求k的值;如果這個方程有兩個整數根,求出它的根.23.(12分)華聯超市準備代銷一款運動鞋,每雙的成本是170元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是200元時,每天的銷售量是40雙,而銷售單價每降低1元,每天就可多售出5雙,設每雙降低x元(x為正整數),每天的銷售利潤為y元.求y與x的函數關系式;每雙運動鞋的售價定為多少元時,每天可獲得最大利潤?最大利潤是多少?24.(14分)已知,在菱形ABCD中,∠ADC=60°,點H為CD上任意一點(不與C、D重合),過點H作CD的垂線,交BD于點E,連接AE.(1)如圖1,線段EH、CH、AE之間的數量關系是;(2)如圖2,將△DHE繞點D順時針旋轉,當點E、H、C在一條直線上時,求證:AE+EH=CH.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據方差的概念進行解答即可.【詳解】由題意可知甲的方差最小,則應該選擇甲.故答案為A.【點睛】本題考查了方差,解題的關鍵是掌握方差的定義進行解題.2、D【解析】
首先根據有理數a,b在數軸上的位置判斷出a、b兩數的符號,從而確定答案.【詳解】由數軸可知:a<0<b,a<-1,0<b<1,所以,A.a+b<0,故原選項錯誤;B.ab<0,故原選項錯誤;C.a-b<0,故原選項錯誤;D.,正確.故選D.【點睛】本題考查了數軸及有理數的乘法,數軸上的數:右邊的數總是大于左邊的數,從而確定a,b的大小關系.3、C【解析】
過點C作CM⊥AB,垂足為M,根據勾股定理求出BC的長,再根據DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數值計算即可.【詳解】過點C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【點睛】本題考查了勾股定理,解題的關鍵是熟練的掌握勾股定理的運算.4、D【解析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點:解分式方程的步驟.5、A【解析】
根據垂徑定理、頻率估計概率、圓的內接多邊形、外切多邊形的性質與正多邊形的定義、概率的意義逐一判斷可得.【詳解】①平分弦(不是直徑)的直徑垂直于弦,故此結論錯誤;②在n次隨機實驗中,事件A出現m次,則事件A發生的頻率,試驗次數足夠大時可近似地看做事件A的概率,故此結論錯誤;③各角相等的圓外切多邊形是正多邊形,此結論正確;④各角相等的圓內接多邊形不一定是正多邊形,如圓內接矩形,各角相等,但不是正多邊形,故此結論錯誤;⑤若一個事件可能發生的結果共有n種,再每種結果發生的可能性相同是,每一種結果發生的可能性是.故此結論錯誤;故選:A.【點睛】本題主要考查命題的真假,解題的關鍵是掌握垂徑定理、頻率估計概率、圓的內接多邊形、外切多邊形的性質與正多邊形的定義、概率的意義.6、A【解析】
試題分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故選A.【詳解】請在此輸入詳解!7、D【解析】
根據三角形三邊關系可知,不能構成三角形,依此即可作出判定;
B、根據勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;
C、解直角三角形可知是頂角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,依此即可作出判定.【詳解】∵1+2=3,不能構成三角形,故選項錯誤;
B、∵12+12=()2,是等腰直角三角形,故選項錯誤;
C、底邊上的高是=,可知是頂角120°,底角30°的等腰三角形,故選項錯誤;
D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定義,故選項正確.
故選D.8、D【解析】解:A.a6÷a2=a4,故A錯誤;B.(﹣2)﹣1=﹣,故B錯誤;C.(﹣3x2)?2x3=﹣6x5,故C錯;D.(π﹣3)0=1,故D正確.故選D.9、B【解析】分析:首先得到當點E旋轉至y軸上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長即可.詳解:如圖,當點E旋轉至y軸上時DE最小;∵△ABC是等邊三角形,D為BC的中點,∴AD⊥BC∵AB=BC=2∴AD=AB?sin∠B=,∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點A的坐標為(0,6)∴OA=6∴DE′=OA-AD-OE′=4-故選B.點睛:本題考查了正多邊形的計算及等邊三角形的性質,解題的關鍵是從圖形中整理出直角三角形.10、A【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】
根據共走了45米,每次前進5米且左轉的角度相同,則可計算出該正多邊形的邊數,再根據外角和計算左轉的角度.【詳解】連續左轉后形成的正多邊形邊數為:,則左轉的角度是.故答案是:.【點睛】本題考查了多邊形的外角計算,正確理解多邊形的外角和是360°是關鍵.12、【解析】∵點A(2,0),點B(0,1),∴OA=2,OB=1,.∵l⊥AB,∴∠PAC+OAB=90°.∵∠OBA+∠OAB=90°,∴∠OBA=∠PAC.∵∠AOB=∠ACP,∴△ABO∽△PAC,.設AC=m,PC=2m,.當點P在x軸的上方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2+2=4,∴P(4,4).當點P在x軸的下方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2-2=0,∴P(0,4).所以P點坐標為或(4,4)或或(0,4)【點睛】本題考察了相似三角形的判定,相似三角形的性質,平面直角坐標系點的坐標及分類討論的思想.在利用相似三角形的性質列比例式時,要找好對應邊,如果對應邊不確定,要分類討論.因點P在x軸上方和下方得到的結果也不一樣,所以要分兩種情況求解.請在此填寫本題解析!13、【解析】
無理數包括三方面的數:①含π的,②一些開方開不盡的根式,③一些有規律的數,根據以上內容判斷即可.【詳解】解:=4,是有理數,﹣3、、0都是有理數,是無理數.故答案為:.【點睛】本題考查了對無理數的定義的理解和運用,注意:無理數是指無限不循環小數,包括三方面的數:①含π的,②一些開方開不盡的根式,③一些有規律的數.14、4π【解析】
根據圓內接四邊形對角互補可得∠BCD+∠A=180°,再根據同弧所對的圓周角與圓心角的關系以及∠BOD=∠BCD,可求得∠A=60°,從而得∠BOD=120°,再利用弧長公式進行計算即可得.【詳解】解:∵四邊形ABCD內接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的長=,故答案為4π.【點睛】本題考查了圓周角定理、弧長公式等,求得∠A的度數是解題的關鍵.15、1【解析】
作AB的中點E,連接EM、CE,根據直角三角形斜邊上的中線等于斜邊的一半以及三角形的中位線定理求得CE和EM的長,然后在△CEM中根據三邊關系即可求解.【詳解】作AB的中點E,連接EM、CE,在直角△ABC中,AB===10,∵E是直角△ABC斜邊AB上的中點,∴CE=AB=5,∵M是BD的中點,E是AB的中點,∴ME=AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值為1,故答案為1.【點睛】本題考查了點與圓的位置關系、三角形的中位線定理的知識,要結合勾股定理、直角三角形斜邊上的中線等于斜邊的一半解答.16、【解析】
解:∵四邊形ABCO是矩形,AB=1,∴設B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數y=(k≠0)的圖象恰好經過點A′,B,∴m?m=m,∴m=,∴k=.【點睛】本題考查反比例函數圖象上點的坐標特征;矩形的性質,利用數形結合思想解題是關鍵.17、.【解析】
由點A(1,1),可得OA的長,點A在第一象限的角平分線上,可得∠AOB=45°,,再根據弧長公式計算即可.【詳解】∵A(1,1),∴OA=,點A在第一象限的角平分線上,∵以點O為旋轉中心,將點A逆時針旋轉到點B的位置,∴∠AOB=45°,∴的長為=,故答案為:.【點睛】本題考查坐標與圖形變化——旋轉,弧長公式,熟練掌握旋轉的性質以及弧長公式是解題的關鍵.本題中求出OA=以及∠AOB=45°也是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)補全條形統計圖見解析;“騎車”部分所對應的圓心角的度數為108°;(2)2人都是“喜歡乘車”的學生的概率為.【解析】
(1)從兩圖中可以看出乘車的有25人,占了50%,即可得共有學生50人;總人數減乘車的和騎車的人數就是步行的人數,根據數據補全直方圖即可;要求扇形的度數就要先求出騎車的占的百分比,然后再求度數;(2)列出從這4人中選兩人的所有等可能結果數,2人都是“喜歡乘車”的學生的情況有3種,然后根據概率公式即可求得.【詳解】(1)被調查的總人數為25÷50%=50人;則步行的人數為50﹣25﹣15=10人;如圖所示條形圖,“騎車”部分所對應的圓心角的度數=×360°=108°;(2)設3名“喜歡乘車”的學生表示為A、B、C,1名“喜歡騎車”的學生表示為D,則有AB、AC、AD、BC、BD、CD這6種等可能的情況,其中2人都是“喜歡乘車”的學生有3種結果,所以2人都是“喜歡乘車”的學生的概率為.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.19、(1)y=2x(2)(0,【解析】
(1)根據反比例函數比例系數k的幾何意義得出12【詳解】(1)∵反比例函數y==kx∴12∵k>0,∴k=2,故反比例函數的解析式為:y=2x(2)作點A關于y軸的對稱點A′,連接A′B,交y軸于點P,則PA+PB最小.由y=-12x+52∴A(1,2),B(4,12∴A′(﹣1,2),最小值A′B=4+12+1設直線A′B的解析式為y=mx+n,則-m+n=24m+n=12∴直線A′B的解析式為y=-3∴x=0時,y=1710∴P點坐標為(0,1710【點睛】本題考查的是反比例函數圖象與一次函數圖象的交點問題以及最短路線問題,解題的關鍵是確定PA+PB最小時,點P的位置,靈活運用數形結合思想求出有關點的坐標和圖象的解析式是解題的關鍵.20、(1)1;(1)y=x1﹣4x+1或y=x1+6x+1.【解析】
(1)解方程求出點A的坐標,根據勾股定理計算即可;(1)設新拋物線對應的函數表達式為:y=x1+bx+1,根據二次函數的性質求出點C′的坐標,根據題意求出直線CC′的解析式,代入計算即可.【詳解】解:(1)由x1﹣4=0得,x1=﹣1,x1=1,∵點A位于點B的左側,∴A(﹣1,0),∵直線y=x+m經過點A,∴﹣1+m=0,解得,m=1,∴點D的坐標為(0,1),∴AD==1;(1)設新拋物線對應的函數表達式為:y=x1+bx+1,y=x1+bx+1=(x+)1+1﹣,則點C′的坐標為(﹣,1﹣),∵CC′平行于直線AD,且經過C(0,﹣4),∴直線CC′的解析式為:y=x﹣4,∴1﹣=﹣﹣4,解得,b1=﹣4,b1=6,∴新拋物線對應的函數表達式為:y=x1﹣4x+1或y=x1+6x+1.【點睛】本題考查的是拋物線與x軸的交點、待定系數法求函數解析式,掌握二次函數的性質、拋物線與x軸的交點的求法是解題的關鍵.21、0≤k≤且k≠1.【解析】
根據二次項系數非零、被開方數非負及根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可求出k的取值范圍.【詳解】解:∵關于x的一元二次方程(k﹣1)x2+x+3=0有實數根,∴2k≥0,k-1≠0,Δ=()2-43(k-1)≥0,解得:0≤k≤且k≠1.∴k的取值范圍為0≤k≤且k≠1.【點睛】本題考查了根的判別式、二次根式以及一元二次方程的定義,根據二次項系數非零、被開方數非負及根的判別式△≥0,列出關于k的一元一次不等式組是解題的關鍵.當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.22、(2)k=﹣2,﹣2.(2)方程的根為x2=x2=2.【解析】
(2)根據方程有實數根,得到根的判別式的值大于等于0列出關于k的不等式,求出不等式的解集即可得到k的值;(2)將k的值代入原方程,求出方程的根,經檢驗即可得到滿足題意的k的值.【詳解】解:(2)根據題意,得△=(﹣6)2﹣4×3(2﹣k)≥0,解得k≥﹣2.∵k為負整數,∴k=﹣2,﹣2.(2)當k=﹣2時,不符合題意,舍去;當k=﹣2時,符合題意,此時方程的根為x2=x2=2.【點睛】本題考查了根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:(2)△>0時,方程有兩個不相等的實數根;(2)△=0時,方程有兩個相等的實數根;(3)△<0時,方程沒有實數根.也考查了一元二次方程的解法.23、(1)y=﹣5x2+110x+1200;(2)售價定為189元,利潤最大1805元【解析】
利潤等于(售價﹣成本)×銷售量,根據題意列出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 培訓招生策劃方案
- 鋼筋購銷合同協議書
- 銀行委托支付協議書
- 到診所兼職執業協議書
- 車間安全保密協議書
- 迪拜鋼琴轉讓協議書
- 高空吊繩安全協議書
- 車位物業代銷協議書
- 一方放棄房子權協議書
- 運輸公司買賣協議書
- 2025年公務員考試《行測》模擬題及答案(詳細解析)
- 2024員工質量意識培訓
- 塔吊定期檢查記錄表
- 信息系統監理師(基礎知識、應用技術)合卷軟件資格考試(中級)試題與參考答案(2024年)
- 上海市上寶中學新初一分班(摸底)語文模擬試題(5套帶答案)
- 河南省南陽市2023-2024學年高二下學期期終質量評估+物理試卷答案
- 食品安全與質量檢測技能大賽考試題庫400題(含答案)
- 2024年浙江省嘉興市初三中考三模科學試卷試題(含答案詳解)
- 核心素養-空間觀念
- 吉林省長春市2024年中考語文真題試卷【附真題答案】
- DZ/T 0462.3-2023 礦產資源“三率”指標要求 第3部分:鐵、錳、鉻、釩、鈦(正式版)
評論
0/150
提交評論