




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年內蒙古和林格爾縣中考數學考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.式子有意義的x的取值范圍是()A.且x≠1 B.x≠1 C. D.且x≠12.去年某市7月1日到7日的每一天最高氣溫變化如折線圖所示,則關于這組數據的描述正確的是()A.最低溫度是32℃ B.眾數是35℃ C.中位數是34℃ D.平均數是33℃3.在武漢市舉辦的“讀好書、講禮儀”活動中,某學校積極行動,各班圖書角的新書、好書不斷增多,除學校購買外,還有師生捐獻的圖書.下面是七年級(1)班全體同學捐獻圖書的情況統計圖,根據圖中信息,該班平均每人捐書的冊數是()A.3B.3.2C.4D.4.54.計算﹣8+3的結果是()A.﹣11 B.﹣5 C.5 D.115.下列圖形中,是正方體表面展開圖的是()A. B. C. D.6.二次函數y=3(x﹣1)2+2,下列說法正確的是()A.圖象的開口向下B.圖象的頂點坐標是(1,2)C.當x>1時,y隨x的增大而減小D.圖象與y軸的交點坐標為(0,2)7.的平方根是()A.2 B. C.±2 D.±8.下列判斷錯誤的是()A.對角線相等的四邊形是矩形B.對角線相互垂直平分的四邊形是菱形C.對角線相互垂直且相等的平行四邊形是正方形D.對角線相互平分的四邊形是平行四邊形9.若分式有意義,則a的取值范圍是()A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切實數10.據史料記載,雎水太平橋建于清嘉慶年間,已有200余年歷史.橋身為一巨型單孔圓弧,既沒有用鋼筋,也沒有用水泥,全部由石塊砌成,猶如一道彩虹橫臥河面上,橋拱半徑OC為13m,河面寬AB為24m,則橋高CD為()A.15m B.17m C.18m D.20m二、填空題(本大題共6個小題,每小題3分,共18分)11.圓錐的底面半徑為6㎝,母線長為10㎝,則圓錐的側面積為______cm212.我們定義:關于x的函數y=ax2+bx與y=bx2+ax(其中a≠b)叫做互為交換函數.如y=3x2+4x與y=4x2+3x是互為交換函數.如果函數y=2x2+bx與它的交換函數圖象頂點關于x軸對稱,那么b=_____.13.若一次函數y=kx﹣1(k是常數,k≠0)的圖象經過第一、三、四象限,則是k的值可以是_____.(寫出一個即可).14.如圖所示,△ABC的頂點是正方形網格的格點,則sinA的值為____.15.如圖,中,,,,將繞點逆時針旋轉至,使得點恰好落在上,與交于點,則的面積為_________.16.如圖,在邊長為3的正方形ABCD中,點E是BC邊上的點,EC=2,∠AEP=90°,且EP交正方形外角的平分線CP于點P,則PC的長為_____.三、解答題(共8題,共72分)17.(8分)閱讀材料:對于線段的垂直平分線我們有如下結論:到線段兩個端點距離相等的點在線段的垂直平分線上.即如圖①,若PA=PB,則點P在線段AB的垂直平分線上請根據閱讀材料,解決下列問題:如圖②,直線CD是等邊△ABC的對稱軸,點D在AB上,點E是線段CD上的一動點(點E不與點C、D重合),連結AE、BE,△ABE經順時針旋轉后與△BCF重合.(I)旋轉中心是點,旋轉了(度);(II)當點E從點D向點C移動時,連結AF,設AF與CD交于點P,在圖②中將圖形補全,并探究∠APC的大小是否保持不變?若不變,請求出∠APC的度數;若改變,請說出變化情況.18.(8分)問題探究(1)如圖①,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數量關系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.19.(8分)(1)(﹣2)2+2sin45°﹣(2)解不等式組,并將其解集在如圖所示的數軸上表示出來.20.(8分)已知:正方形繞點順時針旋轉至正方形,連接.如圖,求證:;如圖,延長交于,延長交于,在不添加任何輔助線的情況下,請直接寫出如圖中的四個角,使寫出的每一個角的大小都等于旋轉角.21.(8分)如圖,在△ABC中,點D是AB邊的中點,點E是CD邊的中點,過點C作CF∥AB交AE的延長線于點F,連接BF.求證:DB=CF;(2)如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結論.22.(10分)新定義:如圖1(圖2,圖3),在△ABC中,把AB邊繞點A順時針旋轉,把AC邊繞點A逆時針旋轉,得到△AB′C′,若∠BAC+∠B′AC′=180°,我們稱△ABC是△AB′C′的“旋補三角形”,△AB'C′的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”(特例感知)(1)①若△ABC是等邊三角形(如圖2),BC=1,則AD=;②若∠BAC=90°(如圖3),BC=6,AD=;(猜想論證)(2)在圖1中,當△ABC是任意三角形時,猜想AD與BC的數量關系,并證明你的猜想;(拓展應用)(3)如圖1.點A,B,C,D都在半徑為5的圓上,且AB與CD不平行,AD=6,點P是四邊形ABCD內一點,且△APD是△BPC的“旋補三角形”,點P是“旋補中心”,請確定點P的位置(要求尺規作圖,不寫作法,保留作圖痕跡),并求BC的長.23.(12分)計算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.24.如圖,在?ABCD中,過點A作AE⊥BC于點E,AF⊥DC于點F,AE=AF.(1)求證:四邊形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】根據二次根式被開方數必須是非負數和分式分母不為0的條件,要使在實數范圍內有意義,必須且.故選A.2、D【解析】分析:將數據從小到大排列,由中位數及眾數、平均數的定義,可得出答案.詳解:由折線統計圖知這7天的氣溫從低到高排列為:31、32、33、33、33、34、35,所以最低氣溫為31℃,眾數為33℃,中位數為33℃,平均數是=33℃.故選D.點睛:本題考查了眾數、中位數的知識,解答本題的關鍵是由折線統計圖得到最高氣溫的7個數據.3、B【解析】七年級(1)班捐獻圖書的同學人數為9÷18%=50人,捐獻4冊的人數為50×30%=15人,捐獻3冊的人數為50-6-9-15-8=12人,所以該班平均每人捐書的冊數為(6+9×2+12×3+15×4+8×5)÷50=3.2冊,故選B.4、B【解析】
絕對值不等的異號加法,取絕對值較大的加數符號,并用較大的絕對值減去較小的絕對值.互為相反數的兩個數相加得1.依此即可求解.【詳解】解:?8+3=?2.故選B.【點睛】考查了有理數的加法,在進行有理數加法運算時,首先判斷兩個加數的符號:是同號還是異號,是否有1.從而確定用那一條法則.在應用過程中,要牢記“先符號,后絕對值”.5、C【解析】
利用正方體及其表面展開圖的特點解題.【詳解】解:A、B、D經過折疊后,下邊沒有面,所以不可以圍成正方體,C能折成正方體.故選C.【點睛】本題考查了正方體的展開圖,解題時牢記正方體無蓋展開圖的各種情形.6、B【解析】
由拋物線解析式可求得其開口方向、頂點坐標、最值及增減性,則可判斷四個選項,可求得答案.【詳解】解:A、因為a=3>0,所以開口向上,錯誤;B、頂點坐標是(1,2),正確;C、當x>1時,y隨x增大而增大,錯誤;D、圖象與y軸的交點坐標為(0,5),錯誤;故選:B.【點睛】考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點坐標為(h,k).7、D【解析】
先化簡,然后再根據平方根的定義求解即可.【詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【點睛】本題考查了平方根的定義以及算術平方根,先把正確化簡是解題的關鍵,本題比較容易出錯.8、A【解析】
利用菱形的判定定理、矩形的判定定理、平行四邊形的判定定理、正方形的判定定理分別對每個選項進行判斷后即可確定正確的選項.【詳解】解:、對角線相等的四邊形是矩形,錯誤;、對角線相互垂直平分的四邊形是菱形,正確;、對角線相互垂直且相等的平行四邊形是正方形,正確;、對角線相互平分的四邊形是平行四邊形,正確;故選:.【點睛】本題考查了命題與定理的知識,解題的關鍵是能夠了解矩形和菱形的判定定理,難度不大.9、A【解析】分析:根據分母不為零,可得答案詳解:由題意,得,解得故選A.點睛:本題考查了分式有意義的條件,利用分母不為零得出不等式是解題關鍵.10、C【解析】連結OA,如圖所示:
∵CD⊥AB,
∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、60π【解析】
圓錐的側面積=π×底面半徑×母線長,把相應數值代入即可求解.解:圓錐的側面積=π×6×10=60πcm1.12、﹣1【解析】
根據題意可以得到交換函數,由頂點關于x軸對稱,從而得到關于b的方程,可以解答本題.【詳解】由題意函數y=1x1+bx的交換函數為y=bx1+1x.∵y=1x1+bx=,y=bx1+1x=,函數y=1x1+bx與它的交換函數圖象頂點關于x軸對稱,∴﹣=﹣且,解得:b=﹣1.故答案為﹣1.【點睛】本題考查了二次函數的性質.理解交換函數的意義是解題的關鍵.13、1【解析】
由一次函數圖象經過第一、三、四象限,可知k>0,﹣1<0,在范圍內確定k的值即可.【詳解】解:因為一次函數y=kx﹣1(k是常數,k≠0)的圖象經過第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.故答案為1.【點睛】根據一次函數圖象所經過的象限,可確定一次項系數,常數項的值的符號,從而確定字母k的取值范圍.14、.【解析】
解:連接CE,∵根據圖形可知DC=1,AD=3,AC=,BE=CE=,∠EBC=∠ECB=45°,∴CE⊥AB,∴sinA=,故答案為.考點:勾股定理;三角形的面積;銳角三角函數的定義.15、【解析】
首先證明△CAA′是等邊三角形,再證明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三邊的關系求出CD、A′D即可解決問題.【詳解】在Rt△ACB中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∵△ABC繞點C逆時針旋轉至△A′B′C,使得點A′恰好落在AB上,
∴CA=CA′=2,∠CA′B′=∠A=60°,
∴△CAA′為等邊三角形,
∴∠ACA′=60°,
∴∠BCA′=∠ACB-∠ACA′=90°-60°=30°,
∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,
在Rt△A′DC中,∵∠A′CD=30°,∴A′D=CA′=1,CD=A′D=,∴.故答案為:【點睛】本題考查了含30度的直角三角形三邊的關系,等邊三角形的判定和性質以及旋轉的性質,掌握旋轉的性質“對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等”是解題的關鍵.16、【解析】
在AB上取BN=BE,連接EN,根據已知及正方形的性質利用ASA判定△ANE≌△ECP,從而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解決問題.【詳解】在AB上取BN=BE,連接EN,作PM⊥BC于M.∵四邊形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.故答案為:.【點睛】本題考查了正方形的性質、全等三角形的判定和性質、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考??碱}型.三、解答題(共8題,共72分)17、B60【解析】分析:(1)根據旋轉的性質可得出結論;(2)根據旋轉的性質可得BF=CF,則點F在線段BC的垂直平分線上,又由AC=AB,可得點A在線段BC的垂直平分線上,由AF垂直平分BC,即∠CQP=90,進而得出∠APC的度數.詳解:(1)B,60;(2)補全圖形如圖所示;的大小保持不變,理由如下:設與交于點∵直線是等邊的對稱軸∴,∵經順時針旋轉后與重合∴,∴∴點在線段的垂直平分線上∵∴點在線段的垂直平分線上∴垂直平分,即∴點睛:本題考查了旋轉的性質,解題的關鍵是熟記旋轉的性質及垂直平分線的性質,注意只證明一點是不能說明這條直線是垂直平分線的.18、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解析】
(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進而得到EF=FG問題即可解決;(2)將△ABD繞著點B順時針旋轉60°,得到△BCE,連接DE,由旋轉可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據DE<DC+CE,則當D、C、E三點共線時,DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,由旋轉的性質得△DBE是等邊三角形,則DE=AC,根據在等邊三角形BCE中,EF⊥BC,可求出BF,EF,以BC為直徑作⊙F,則點D在⊙F上,連接DF,可求出DF,則AC=DE≤DF+EF,代入數值即可解決問題.【詳解】(1)如圖①,延長CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案為:BE+DF=EF;(2)存在.在等邊三角形ABC中,AB=BC,∠ABC=60°,如圖②,將△ABD繞著點B順時針旋轉60°,得到△BCE,連接DE.由旋轉可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等邊三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴當D、C、E三點共線時,DE存在最大值,且最大值為6,∴BD的最大值為6;(3)存在.如圖③,以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等邊三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC為直徑作⊙F,則點D在⊙F上,連接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值為2+2.【點睛】本題考查了全等三角形的判定與性質以及旋轉的性質,解題的關鍵是熟練的掌握全等三角形的判定與性質以及旋轉的性質.19、(1)4﹣5;﹣<x≤2,在數軸上表示見解析【解析】
(1)此題涉及乘方、特殊角的三角函數、負整數指數冪和二次根式的化簡,首先針對各知識點進行計算,再計算實數的加減即可;(2)首先解出兩個不等式的解集,再根據大小小大中間找確定不等式組的解集.【詳解】解:(1)原式=4+2×﹣2×3=4+﹣6=4﹣5;(2),解①得:x>﹣,解②得:x≤2,不等式組的解集為:﹣<x≤2,在數軸上表示為:.【點睛】此題主要考查了解一元一次不等式組,以實數的運算,關鍵是正確確定兩個不等式的解集,掌握特殊角的三角函數值.20、(1)證明見解析;(2).【解析】
(1)連接AF、AC,易證∠EAC=∠DAF,再證明ΔEAC?ΔDAF,根據全等三角形的性質即可得CE=DF;(2)由旋轉的性質可得∠DAG、∠BAE都是旋轉角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.【詳解】(1)證明:連接,∵正方形旋轉至正方形∴,∴∴在和中,,∴∴(2).∠DAG、∠BAE、∠FMC、∠CNF;由旋轉的性質可得∠DAG、∠BAE都是旋轉角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,【點睛】本題考查了正方形的性質、旋轉的性質及全等三角形的判定與性質,證明ΔEAC?ΔDAF是解決問題的關鍵.21、(1)證明見解析;(2)四邊形BDCF是矩形,理由見解析.【解析】(1)證明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四邊形BDCF是矩形.證明:由(1)知DB=CF,又DB∥CF,∴四邊形BDCF為平行四邊形.∵AC=BC,AD=DB,∴CD⊥AB.∴四邊形BDCF是矩形.22、(1)①2;②3;(2)AD=12【解析】
(1)①根據等邊三角形的性質可得出AB=AC=1、∠BAC=60,結合“旋補三角形”的定義可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三線合一可得出∠ADC′=90°,通過解直角三角形可求出AD的長度;
②由“旋補三角形”的定義可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,進而可得出△ABC≌△AB′C′(SAS),根據全等三角形的性質可得出B′C′=BC=6,再利用直角三角形斜邊上的中線等于斜邊的一半即可求出AD的長度;(2)AD=12BC,過點B′作B′E∥AC′,且B′E=AC′,連接C′E、DE,則四邊形ACC′B′為平行四邊形,根據平行四邊形的性質結合“旋補三角形”的定義可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,進而可證出△BAC≌△AB′E(SAS),根據全等三角形的性質可得出BC=AE,由平行四邊形的對角線互相平分即可證出AD=1【詳解】(1)①∵△ABC是等邊三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD為等腰△AB′C′的中線,∴AD⊥B′C′,∠C′=30°,∴∠ADC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=12②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,AB=AB∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=12故答案為:①2;②3.(2)AD=12證明:在圖1中,過點B′作B′E∥AC′,且B′E=AC′,連接C′E、DE,則四邊形ACC′B′為平行四邊形.∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,∴∠BAC=∠AB′E.在△BAC和△AB′E中,BA=AB∴△BAC≌△AB′E(SAS),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水利工程設計階段的質量保障措施
- 工業生產中的環境保護措施
- 旅游業解放思想轉變作風心得體會
- 正當大雪紛飛時300字9篇
- 慢性心力衰竭治療原則
- 歷史事件中的啟示話題作文11篇
- 中國之旅課件圖片
- 2025今冬醫院火災安全防范工作總結范文
- 電力行業設備資源管理方案
- 老年疾病護理要點與實施策略
- 黃泉下的美術:宏觀中國古代墓葬
- 無違法犯罪記錄證明申請表(個人)
- 內部調撥單表格
- 2023年07月浙江建設技師學院200人筆試歷年??键c試卷附帶答案詳解
- 中國真正丹道理法及工程次第闡真
- 2022年四川省成都市中考英語試卷及答案
- 新年春節廉潔過年過廉潔年端午節清廉文化中秋節廉潔過節優秀課件兩篇
- GB/T 10920-2008螺紋量規和光滑極限量規型式與尺寸
- 認知宇宙飛船之星際探索
- 皮膚病理知識學習整理課件整理
- 人工智能課件213產生式表示法
評論
0/150
提交評論