2022年江蘇省無錫市丁蜀學區達標名校中考數學考前最后一卷含解析_第1頁
2022年江蘇省無錫市丁蜀學區達標名校中考數學考前最后一卷含解析_第2頁
2022年江蘇省無錫市丁蜀學區達標名校中考數學考前最后一卷含解析_第3頁
2022年江蘇省無錫市丁蜀學區達標名校中考數學考前最后一卷含解析_第4頁
2022年江蘇省無錫市丁蜀學區達標名校中考數學考前最后一卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年江蘇省無錫市丁蜀學區達標名校中考數學考前最后一卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如果,那么代數式的值是()A.6 B.2 C.-2 D.-62.如圖所示的圖形,是下面哪個正方體的展開圖()A. B. C. D.3.將三粒均勻的分別標有,,,,,的正六面體骰子同時擲出,朝上一面上的數字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.4.拋物線y=–x2+bx+c上部分點的橫坐標x、縱坐標y的對應值如下表所示:x…–2–1012…y…04664…從上表可知,下列說法錯誤的是A.拋物線與x軸的一個交點坐標為(–2,0) B.拋物線與y軸的交點坐標為(0,6)C.拋物線的對稱軸是直線x=0 D.拋物線在對稱軸左側部分是上升的5.實數的相反數是()A. B. C. D.6.如圖,實數﹣3、x、3、y在數軸上的對應點分別為M、N、P、Q,這四個數中絕對值最小的數對應的點是()A.點M B.點N C.點P D.點Q7.如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結論有()A.4個 B.3個 C.2個 D.1個8.如圖1所示,甲、乙兩車沿直路同向行駛,車速分別為20m/s和v(m/s),起初甲車在乙車前a(m)處,兩車同時出發,當乙車追上甲車時,兩車都停止行駛.設x(s)后兩車相距y(m),y與x的函數關系如圖2所示.有以下結論:①圖1中a的值為500;②乙車的速度為35m/s;③圖1中線段EF應表示為;④圖2中函數圖象與x軸交點的橫坐標為1.其中所有的正確結論是()A.①④ B.②③C.①②④ D.①③④9.下列函數中,當x>0時,y值隨x值增大而減小的是()A.y=x2 B.y=x﹣1 C. D.10.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數是()A.25° B.35° C.45° D.65°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB是⊙O的直徑,BD,CD分別是過⊙O上點B,C的切線,且∠BDC=110°.連接AC,則∠A的度數是_____°.12.如圖,AB為圓O的直徑,弦CD⊥AB,垂足為點E,連接OC,若OC=5,CD=8,則AE=______.13.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A,B分別在l3,l2上,則sinα的值是_____.14.如圖,五邊形是正五邊形,若,則__________.15.中國古代的數學專著《九章算術》有方程組問題“五只雀,六只燕,共重1斤(等于16兩),雀重燕輕.互換其中一只,恰好一樣重.”設每只雀、燕的重量各為x兩,y兩,則根據題意,可得方程組為___.16.已知:如圖,△ABC內接于⊙O,且半徑OC⊥AB,點D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由,線段CD和線段BD所圍成圖形的陰影部分的面積為__.三、解答題(共8題,共72分)17.(8分)“揚州漆器”名揚天下,某網店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數關系,如圖所示.求與之間的函數關系式;如果規定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?該網店店主熱心公益事業,決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.18.(8分)先化簡,再求值:(﹣1)÷,其中x=1.19.(8分)如圖,直線y=﹣x+2與反比例函數(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.求a,b的值及反比例函數的解析式;若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標;在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.20.(8分)在如圖的正方形網格中,每一個小正方形的邊長均為1.格點三角形ABC(頂點是網格線交點的三角形)的頂點A、C的坐標分別是(﹣2,0),(﹣3,3).(1)請在圖中的網格平面內建立平面直角坐標系,寫出點B的坐標;(2)把△ABC繞坐標原點O順時針旋轉90°得到△A1B1C1,畫出△A1B1C1,寫出點B1的坐標;(3)以坐標原點O為位似中心,相似比為2,把△A1B1C1放大為原來的2倍,得到△A2B2C2畫出△A2B2C2,使它與△AB1C1在位似中心的同側;請在x軸上求作一點P,使△PBB1的周長最小,并寫出點P的坐標.21.(8分)如圖,已知一次函數的圖象與反比例函數的圖象交于點,與軸、軸交于兩點,過作垂直于軸于點.已知.(1)求一次函數和反比例函數的表達式;(2)觀察圖象:當時,比較.22.(10分)如圖,某同學在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達D處,在D處測得點A的仰角為45°,求建筑物AB的高度.23.(12分)如圖,在平面直角坐標系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結束,且速度均為1cm/s,設運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設△AEQ的面積為S,求S與t的函數關系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當△AEQ的面積最大時,平面內是否存在一點P,使A、D、Q、P構成的四邊形是菱形,若存在請直接寫出P坐標,若不存在請說明理由?24.如圖,平面直角坐標系中,直線與x軸,y軸分別交于A,B兩點,與反比例函數的圖象交于點.求反比例函數的表達式;若點C在反比例函數的圖象上,點D在x軸上,當四邊形ABCD是平行四邊形時,求點D的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】【分析】將所求代數式先利用單項式乘多項式法則、平方差公式進行展開,然后合并同類項,最后利用整體代入思想進行求值即可.【詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【點睛】本題考查了代數式求值,涉及到單項式乘多項式、平方差公式、合并同類項等,利用整體代入思想進行解題是關鍵.2、D【解析】

根據展開圖中四個面上的圖案結合各選項能夠看見的面上的圖案進行分析判斷即可.【詳解】A.因為A選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是A:B.因為B選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是B;C.因為C選項中的幾何體能夠看見的三個面上都沒有陰影圖家,而展開圖中有四個面上有陰影圖室,所以不可能是C.D.因為D選項中的幾何體展開后有可能得到如圖所示的展開圖,所以可能是D;故選D.【點睛】本題考查了學生的空間想象能力,解決本題的關鍵突破口是掌握正方體的展開圖特征.3、C【解析】

三粒均勻的正六面體骰子同時擲出共出現216種情況,而邊長能構成直角三角形的數字為3、4、5,含這三個數字的情況有6種,故由概率公式計算即可.【詳解】解:因為將三粒均勻的分別標有1,2,3,4,5,6的正六面體骰子同時擲出,按出現數字的不同共=216種情況,其中數字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.【點睛】本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.4、C【解析】當x=-2時,y=0,

∴拋物線過(-2,0),

∴拋物線與x軸的一個交點坐標為(-2,0),故A正確;

當x=0時,y=6,

∴拋物線與y軸的交點坐標為(0,6),故B正確;

當x=0和x=1時,y=6,

∴對稱軸為x=,故C錯誤;

當x<時,y隨x的增大而增大,

∴拋物線在對稱軸左側部分是上升的,故D正確;

故選C.5、D【解析】

根據相反數的定義求解即可.【詳解】的相反數是-,故選D.【點睛】本題考查了實數的性質,在一個數的前面加上負號就是這個數的相反數.6、D【解析】∵實數-3,x,3,y在數軸上的對應點分別為M、N、P、Q,

∴原點在點M與N之間,

∴這四個數中絕對值最大的數對應的點是點Q.

故選D.7、A【解析】

①正確.只要證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②正確.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;③正確.只要證明DM垂直平分CF,即可證明;④正確.設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,可得tan∠CAD===.【詳解】如圖,過D作DM∥BE交AC于N.∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.∵BE⊥AC于點F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴=.∵AE=AD=BC,∴=,∴CF=2AF,故②正確;∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF.∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,∴tan∠CAD===.故④正確.故選A.【點睛】本題考查了相似三角形的判定和性質,矩形的性質,圖形面積的計算以及解直角三角形的綜合應用,正確的作出輔助線構造平行四邊形是解題的關鍵.解題時注意:相似三角形的對應邊成比例.8、A【解析】分析:①根據圖象2得出結論;②根據(75,125)可知:75秒時,兩車的距離為125m,列方程可得結論;③根據圖1,線段的和與差可表示EF的長;④利用待定系數法求直線的解析式,令y=0可得結論.詳解:①y是兩車的距離,所以根據圖2可知:圖1中a的值為500,此選項正確;②由題意得:75×20+500-75y=125,v=25,則乙車的速度為25m/s,故此選項不正確;③圖1中:EF=a+20x-vx=500+20x-25x=500-5x.故此選項不正確;④設圖2的解析式為:y=kx+b,把(0,500)和(75,125)代入得:,解得,∴y=-5x+500,當y=0時,-5x+500=0,x=1,即圖2中函數圖象與x軸交點的橫坐標為1,此選項正確;其中所有的正確結論是①④;故選A.點睛:本題考查了一次函數的應用,根據函數圖象,讀懂題目信息,理解兩車間的距離與時間的關系是解題的關鍵.9、D【解析】A、、∵y=x2,∴對稱軸x=0,當圖象在對稱軸右側,y隨著x的增大而增大;而在對稱軸左側,y隨著x的增大而減小,故此選項錯誤B、k>0,y隨x增大而增大,故此選項錯誤C、B、k>0,y隨x增大而增大,故此選項錯誤D、y=(x>0),反比例函數,k>0,故在第一象限內y隨x的增大而減小,故此選項正確10、A【解析】

如圖,過點C作CD∥a,再由平行線的性質即可得出結論.【詳解】如圖,過點C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【點睛】本題考查了平行線的性質與判定,根據題意作出輔助線,構造出平行線是解答此題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、4.【解析】試題分析:連結BC,因為AB是⊙O的直徑,所以∠ACB=90°,∠A+∠ABC=90°,又因為BD,CD分別是過⊙O上點B,C的切線,∠BDC=440°,所以CD=BD,所以∠BCD=∠DBC=4°,又∠ABD=90°,所以∠A=∠DBC=4°.考點:4.圓周角定理;4.切線的性質;4.切線長定理.12、2【解析】試題解析:∵AB為圓O的直徑,弦CD⊥AB,垂足為點E.在直角△OCE中,則AE=OA?OE=5?3=2.故答案為2.13、【解析】

過點A作AD⊥l1于D,過點B作BE⊥l1于E,根據同角的余角相等求出∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據全等三角形對應邊相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用銳角的正弦等于對邊比斜邊列式計算即可得解.【詳解】如圖,過點A作AD⊥l1于D,過點B作BE⊥l1于E,設l1,l2,l3間的距離為1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴AD=2,∴AC=,∴AB=AC=,∴sinα=,故答案為.【點睛】本題考查了全等三角形的判定與性質,等腰直角三角形的性質,銳角三角函數的定義,正確添加輔助線構造出全等三角形是解題的關鍵.14、72【解析】分析:延長AB交于點F,根據得到∠2=∠3,根據五邊形是正五邊形得到∠FBC=72°,最后根據三角形的外角等于與它不相鄰的兩個內角的和即可求出.詳解:延長AB交于點F,∵,∴∠2=∠3,∵五邊形是正五邊形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案為:72°.點睛:此題主要考查了平行線的性質和正五邊形的性質,正確把握五邊形的性質是解題關鍵.15、【解析】設每只雀、燕的重量各為x兩,y兩,由題意得:故答案是:或.16、2﹣π.【解析】試題分析:根據題意可得:∠O=2∠A=60°,則△OBC為等邊三角形,根據∠BCD=30°可得:∠OCD=90°,OC=AC=2,則CD=,,則.三、解答題(共8題,共72分)17、(1);(2)單價為46元時,利潤最大為3840元.(3)單價的范圍是45元到55元.【解析】

(1)可用待定系數法來確定y與x之間的函數關系式;(2)根據利潤=銷售量×單件的利潤,然后將(1)中的函數式代入其中,求出利潤和銷售單件之間的關系式,然后根據其性質來判斷出最大利潤;(3)首先得出w與x的函數關系式,進而利用所獲利潤等于3600元時,對應x的值,根據增減性,求出x的取值范圍.【詳解】(1)由題意得:.故y與x之間的函數關系式為:y=-10x+700,(2)由題意,得-10x+700≥240,解得x≤46,設利潤為w=(x-30)?y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50時,w隨x的增大而增大,∴x=46時,w大=-10(46-50)2+4000=3840,答:當銷售單價為46元時,每天獲取的利潤最大,最大利潤是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如圖所示,由圖象得:當45≤x≤55時,捐款后每天剩余利潤不低于3600元.【點睛】此題主要考查了二次函數的應用、一次函數的應用和一元二次方程的應用,利用函數增減性得出最值是解題關鍵,能從實際問題中抽象出二次函數模型是解答本題的重點和難點.18、-1.【解析】

先化簡題目中的式子,再將x的值代入化簡后的式子即可解答本題.【詳解】解:原式=,=,=,=﹣,當x=1時,原式=﹣=﹣1.【點睛】本題主要考查分式的化簡求值,解題的關鍵是掌握分式的混合運算順序和運算法則19、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).【解析】

(1)利用點在直線上,將點的坐標代入直線解析式中求解即可求出a,b,最后用待定系數法求出反比例函數解析式;(2)設出點P坐標,用三角形的面積公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3?n|,進而建立方程求解即可得出結論;(3)設出點M坐標,表示出MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=32,再三種情況建立方程求解即可得出結論.【詳解】(1)∵直線y=-x+2與反比例函數y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵點A(-1,3)在反比例函數y=上,∴k=-1×3=-3,∴反比例函數解析式為y=;(2)設點P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=AC×|xP?xA|=×3×|n+1|,S△BDP=BD×|xB?xP|=×1×|3?n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3?n|,∴n=0或n=?3,∴P(0,2)或(?3,5);(3)設M(m,0)(m>0),∵A(?1,3),B(3,?1),∴MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=(3+1)2+(?1?3)2=32,∵△MAB是等腰三角形,∴①當MA=MB時,∴(m+1)2+9=(m?3)2+1,∴m=0,(舍)②當MA=AB時,∴(m+1)2+9=32,∴m=?1+或m=?1?(舍),∴M(?1+,0)③當MB=AB時,(m?3)2+1=32,∴m=3+或m=3?(舍),∴M(3+,0)即:滿足條件的M(?1+,0)或(3+,0).【點睛】此題是反比例函數綜合題,主要考查了待定系數法,三角形的面積的求法,等腰三角形的性質,用方程的思想解決問題是解本題的關鍵.20、(1)(﹣4,1);(2)(1,4);(3)見解析;(4)P(﹣3,0).【解析】

(1)先建立平面直角坐標系,再確定B的坐標;(2)根據旋轉要求畫出△A1B1C1,再寫出點B1的坐標;(3)根據位似的要求,作出△A2B2C2;(4)作點B關于x軸的對稱點B',連接B'B1,交x軸于點P,則點P即為所求.【詳解】解:(1)如圖所示,點B的坐標為(﹣4,1);(2)如圖,△A1B1C1即為所求,點B1的坐標(1,4);(3)如圖,△A2B2C2即為所求;(4)如圖,作點B關于x軸的對稱點B',連接B'B1,交x軸于點P,則點P即為所求,P(﹣3,0).【點睛】本題考核知識點:位似,軸對稱,旋轉.解題關鍵點:理解位似,軸對稱,旋轉的意義.21、(1);(2)【解析】

(1)由一次函數的解析式可得出D點坐標,從而得出OD長度,再由△ODC與△BAC相似及AB與BC的長度得出C、B、A的坐標,進而算出一次函數與反比例函數的解析式;

(2)以A點為分界點,直接觀察函數圖象的高低即可知道答案.【詳解】解:(1)對于一次函數y=kx-2,令x=0,則y=-2,即D(0,-2),

∴OD=2,

∵AB⊥x軸于B,

∴,

∵AB=1,BC=2,

∴OC=4,OB=6,

∴C(4,0),A(6,1)

將C點坐標代入y=kx-2得4k-2=0,

∴k=,

∴一次函數解析式為y=x-2;

將A點坐標代入反比例函數解析式得m=6,

∴反比例函數解析式為y=;

(2)由函數圖象可知:

當0<x<6時,y1<y2;

當x=6時,y1=y2;

當x>6時,y1>y2;【點睛】本題考查了反比例函數與一次函數的交點問題.熟悉函數圖象上點的坐標特征和待定系數法解函數解析式的方法是解答本題的關鍵,同時注意對數形結合思想的認識和掌握.22、(30+30)米.【解析】

解:設建筑物AB的高度為x米在Rt△ABD中,∠ADB=45°∴AB=DB=x∴BC=DB+CD=x+60在Rt△ABC中,∠ACB=30°,∴tan∠ACB=∴∴∴x=30+30∴建筑物AB的高度為(30+30)米23、(1)證明見解析;(2)當t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】

(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數的性質求出面積最大值,并求出此時Q的坐標即可;(3)當△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論