




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
八年級上冊13.4
課題學習最短路徑問題利用軸對稱的知識回答了這個問題.這個問題后來被稱為“牧童飲馬問題”.你能將這個問題抽象為數學問題嗎?探索新知BAl追問1
這是一個實際問題,你打算首先做什么?將A,B兩地抽象為兩個點,將河l抽象為一條直線.探索新知B··Al(1)從A地出發,到河邊l飲馬,然后到B地;(2)在河邊飲馬的地點有無窮多處,把這些地點與A,B連接起來的兩條線段的長度之和,就是從A地到飲馬地點,再回到B地的路程之和;探索新知追問2
你能用自己的語言說明這個問題的意思,并把它抽象為數學問題嗎?探索新知追問2
你能用自己的語言說明這個問題的意思,并把它抽象為數學問題嗎?(3)現在的問題是怎樣找出使兩條線段長度之和為最短的直線l上的點.設C為直線上的一個動點,上面的問題就轉化為:當點C在l的什么位置時,
AC與CB的和最小(如圖).BAlC追問1
對于問題2,如何將點B“移”到l的另一側B′處,滿足直線l上的任意一點C,都保持CB與CB′的長度相等?探索新知問題2
如圖,點A,B在直線l的同側,點C是直線上的一個動點,當點C在l的什么位置時,AC與CB的和最小?B·lA·追問2
你能利用軸對稱的有關知識,找到上問中符合條件的點B′嗎?探索新知問題2
如圖,點A,B在直線l的同側,點C是直線上的一個動點,當點C在l的什么位置時,AC與CB的和最小?B·lA·作法:(1)作點B關于直線l的對稱點B′;(2)連接AB′,與直線l相交于點C.則點C即為所求.探索新知問題2
如圖,點A,B在直線l的同側,點C是直線上的一個動點,當點C在l的什么位置時,AC與CB的和最小?B·lA·B′C探索新知問題3
你能用所學的知識證明AC+BC最短嗎?B·lA·B′C證明:如圖,在直線l上任取一點C′(與點C不重合),連接AC′,BC′,B′C′.由軸對稱的性質知,
BC=B′C,BC′=B′C′.∴AC+BC
=AC+B′C=AB′,AC′+BC′
=AC′+B′C′.探索新知問題3
你能用所學的知識證明AC+BC最短嗎?B·lA·B′CC′探索新知問題3
你能用所學的知識證明AC+BC最短嗎?B·lA·B′CC′證明:在△AB′C′中,
AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.若直線l上任意一點(與點C不重合)與A,B兩點的距離和都大于AC+BC,就說明AC+BC最小.探索新知B·lA·B′CC′追問1
證明AC+BC最短時,為什么要在直線l上任取一點C′(與點C不重合),證明AC+BC<AC′+BC′?這里的“C′”的作用是什么?探索新知追問2
回顧前面的探究過程,我們是通過怎樣的過程、借助什么解決問題的?B·lA·B′CC′運用新知練習如圖,已知:如圖A是銳角∠MON內部任意一點,在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最小.造橋選址問題如圖,A和B兩地在一條河的兩岸,現要在河上造一座橋MN.喬早在何處才能使從A到B的路徑AMNB最短?(假定河的兩岸是平行的直線,橋要與河垂直)BA思維分析BA
1、如圖假定任選位置造橋MN,連接AM和BN,從A到B的路徑是AM+MN+BN,那么怎樣確定什么情況下最短呢?MN
2、利用線段公理解決問題我們遇到了什么障礙呢?
我們能否在不改變AM+MN+BN的前提下把橋轉化到一側呢?什么圖形變換能幫助我們呢?思維火花問題解決BAA1MN如圖,平移A到A1,使AA1等于河寬,連接A1B交河岸于N作橋MN,此時路徑AM+MN+BN最短.理由;另任作橋M1N1,連接AM1,BN1,A1N1.N1M1由平移性質可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.AM+MN+BN轉化為AA1+A1B,而AM1+M1N1+BN1轉化為AA1+A1N1+BN1.在△A1N1B中,由線段公理知A1N1+BN1>A1B因此AM1+M1N1+BN1>AM+MN+BN問題延伸一如圖,A和B兩地之間有兩條河,現要在兩條河上各造一座橋MN和PQ.橋分別建在何處才能使從A到B的路徑最短?(假定河的兩岸是平行的直線,橋要與河岸垂直)思維分析如圖,問題中所走總路徑是AM+MN+NP+PQ+QB.橋MN和PQ在中間,且方向不能改變,仍無法直接利用“兩點之間,線段最短”解決問題,只有利用平移變換轉移到兩側或同一側先走橋長.平移的方法有三種:兩個橋長都平移到A點處、都平移到B點處、MN平移到A點處,PQ平移到B點處三、鞏固訓練(一)基礎訓練:最短路徑問題(1)求直線異側的兩點與直線上一點所連線段的和最小的問題,只要連接這兩點,與直線的交點即為所求.如圖所示,點A,B分別是直線l異側的兩個點,在l上找一個點C,使CA+CB最短,這時點C是直線l與AB的交點.(2)求直線同側的兩點與直線上一點所連線段的和最小的問題,只要找到其中一個點關于這條直線的對稱點,連接對稱點與另一個點,則與該直線的交點即為所求.如圖所示,點A,B分別是直線l同側的兩個點,在l上找一個點C,使CA+CB最短,這時先作點B關于直線l的對稱點B′,則點C是直線l與AB′的交點.(二)變式訓練:如圖,小河邊有兩個村莊A,B,要在河邊建一自來水廠向A村與B村供水.(1)若要使廠部到A,B村的距離相等,則應選擇在哪建廠?(2)若要使廠部到A,B兩村的水管最短,應建在什么地方?(三)綜合訓練:茅坪民族中學八(2)班舉行文藝晚會,桌子擺成如圖a所示兩直排(圖中的AO,BO),AO
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 玻璃光學性能與應用考核試卷
- 紙藝工藝品的商業潛力挖掘考核試卷
- 紡織品進出口業務流程考核試卷
- 破產法與重整重組法律實務考核試卷
- 新型材料項目融資渠道探討考核試卷
- 電機調速與變頻技術實操考核試卷
- 離婚協議子女撫養權變更程序合同
- 跨界電商節活動期間消費者權益保障與風控合同
- 巖土工程地質勘察與施工監理勞務合同
- 醫療保險補充疾病預防協議
- 艦艇損害管制與艦艇損害管制訓練
- 圍墻拆除重建施工方案
- 2024貴州中考物理二輪中考題型研究 題型八 新情景探究實驗專項訓練 (含答案)
- 2023年高考歷史真題新高考福建卷試題含答案解析
- 四川省綿陽市東辰學校2023-2024學年七年級下學期3月月考語文卷
- DZ/T 0430-2023 固體礦產資源儲量核實報告編寫規范(正式版)
- 禁止編入列車的機車車輛講解
- 過期妊娠課件
- 【農業技術推廣探究文獻綜述2300字】
- 新生兒腸脹氣課件
- 加油站清明節節前安全教育培訓
評論
0/150
提交評論