




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
因數倍數教案5篇因數倍數教案篇1
?教學目標】
1、通過“活動建構”,使學生領會因數和倍數的意義;通過獨立思考、交流談論,初步掌握求一個數所有因數的方法。
2、在解決問題的過程中,培養學生思維的有序性、條理性,增強學生的探究意識和求索精神。
3、通過教學,讓學生從中感受到數學思考的魅力,體驗到數學學習的樂趣。
?教學重點】
由于學生對辨析、理清除盡和整除的關系、整除的兩種讀法等易混淆的概念,使學生明確一個數是否是另一個數的倍數或因數時,必須是以整除為前提,因數和倍數是相互依存的概念,不能獨立存在。所以本節課的教學我把重點定位于理解因數和倍數的含義。
?教學難點】
教學難點是自主探索并總結找一個數因數的方法。
?教學過程】
一、意義建構
1、用12個同樣的小正方形擺一個長方形,可以怎樣擺?能不能舉一道簡單的乘法算式,把你心目中的擺法表示出來?(請一位學生回答)
2、猜猜他可能是怎樣擺的?
(根據學生回答依次出現相應的兩種擺法,隨后隱去第二種)
3、還可以怎樣擺?同樣用一道乘法算式表示出來。
(再請一位學生回答)
4、他又可能是怎樣擺的?
(根據學生回答屏幕顯示另外兩種擺法,隨后隱去第二種)
5、還可以怎樣擺?
(請學生回答)
6、能想象出他的擺法嗎?
(根據學生回答屏幕顯示最后兩種擺法,隨后隱去第二種)
此時屏幕上出現三種擺法。在三種擺法右側分別出現三道乘法算式。
7、通過剛才的學習,我們發現,用12個同樣的小正方形,可以擺出三種不同的長方形,由此我們還得出三道不一樣的乘法算式。以4×3=12為例,4×3=12,從數學的角度看,我們可以說4是12的因數,3也是她的因數。反過來,我們還可以說,12是4的倍數,12也是3的倍數。這就是我們今天要研究的“因數和倍數”。
(板書課題:因數和倍數)
8、結合另外兩道乘法算式,你能分別說一說誰是誰的因數,誰是誰的倍數嗎?
(請同座兩個學生相互說一說)
設計理念:“因數與倍數”這節內容,傳統教材是按數學知識的邏輯系統安排的,在除法和整除的基礎上,由整除直接演繹推理出來的。這種概念的揭示從抽象到抽象,沒有學生經歷的過程,學生獲得的概念是刻板的、冰冷的。而本環節設計旨在讓學生借助表象進行操作和想像活動,自主體驗數與形的結合以及其中的“因倍關系”,進而生成因數和倍數的意義。這種意義的建構是基于學生原有經驗之上的,是學生自主操作、積極思考的結果。
二、方法滲透
1、根據“4×4=16、400÷16=25”這兩個算式,你能分別說一說誰是誰的因數,誰是誰的倍數嗎?
(指名回答)
2、當兩個因數相同時,通常只需要說出或寫出一個,這是數學上的規定。我們能不能說16是因數,或者說16是倍數?
(組織學生討論)
3、因數和倍數它們是一種相互依存的關系。
(板書:相互依存)
4、下面我們一塊來找一找100的因數有哪些?同學們可以同座兩人合作,也可以獨立思考。
(教師巡視。并選擇一份作業,用實物投影展示出來)
5、對照你們自己找出的100的所有因數,你想對這位同學說些什么?
(根據學生回答,教師相機進行引導、評價)
6、對于剛才幾位同學的回答,你們還有沒有什么需要補充的或提問的?
7、比較這幾種方法,你發現了什么?
8、回顧剛才的過程,你覺得要找出一個數的所有因數,有什么訣竅?
(通過對話、討論,讓學生體會思考的合理性、有序性)
9、當然,如果要找出一個很大數目的所有因數,用這種方法可能會比較麻煩,我們將在今后的學習中進一步來研究
設計理念:“如何找出100的所有因數”,教學中,教師沒有急切地認定結果,也沒有簡單地把方法告訴學生,而是先讓學生或同座兩人合作,或獨立思考。通過多角度、多層面的交流與對話,師生之間彼此分享經驗、溝通思考。在解決問題的過程中,學生的思維能力得到了提高,情感、態度、價值觀得到了升華。
三、鞏固深化
(課件顯示:下面哪些數一定是□□的因數。1、2、3、4、5、6、7、8、9、10)
1、方框后面藏著—個兩位數,看誰能很快說出下面10個數中,哪些是它的因數?(單擊一下,出示“21”)
2、接著出示“□4”,哪些是它的因數呢?說說你的想法?
3、要使這個數一定有因數2,那么個位上還可以是哪些數字?
4、出示“□0”。你知道除了1和2外,還有哪些數也是它的因數?
5、最后出示“□□”。這一次,十位和個位上的數字都看不清了,你還能找到答案嗎?
設計理念:設計這一組變式練習,一方面使學生進一步掌握找一個數的因數的方法,另一方面又巧妙滲透了能被2整除的數的特征,體現了數學學習的綜合性、連貫性。
四、游戲中的發現
1、請學生拿出學號卡,在紙上寫下你的學號數的所有因數。
2、在這些數中,因數的個數最少的是幾?(對“1”)雖然
“1”是因數個數最少的一個數,但它卻又是最受歡迎的一個
數,你們知道為什么嗎?
3、除了“1”以外,你覺得還有哪些數比較特別的?
(找“2”或“5”號同學。)
4、你這個數特別在哪兒?像這樣的數還有哪些?請把學號
卡舉起來。
(課件顯示:只有兩個因數的有:2、3、5、7、11……)
5、除了這些數外,其余的數各有多少個因數?(對“4”)
你有?(對“6”)你呢?
6、這些數,它們的因數個數多少不一,各不相同。同學們猜一猜在它們中間因數個數最多的是那一個?你覺得?理由是?你有什么辦法可以把這個數盡快地找出來?
7、如果讓同學們將這51個數按照它們因數個數的不同,來分一分類,你們準備怎樣分?其實不光這51個數,把所有的自然數按照因數個數的不同來分類,都可以分成三類。
8、今天這節課我們就上到這兒,關于“因數和倍數”,還有許多的知識等著我們去學習,去研究,去探索……
9、組織學生分批退場。
(1)請學號數不少于三個因數的同學先退場;
(2)請學號數只有兩個因數的同學退場;
(3)請學號數只有一個因數的同學跟我一起離場。
設計理念:通過尋找自己學號數的所有因數,既使學生進一步熟悉找一個數的因數的方法,又讓學生感知到自然數的因數個數各有不同,為后面學習質數與合數埋下伏筆;組織學生分批退場,既檢驗了學生學習的效果,又營造了一種輕松、愉悅的氣氛。正所謂“課已畢,趣猶在”。
?作業設計】
課本第15頁,練習二第一題前半題15的因數有哪些?,第二題,第4題前半題填在書上。
設計意圖:本節課主要的學習目標一是使生明白因數和倍數的意義,二是讓生掌握求一個數因數的方法,作業中鞏固了學生今天的數學技能。
因數倍數教案篇2
課前思考:
1.概念揭示變邏輯演繹為活動建構。因數和倍數,傳統教材是按數學知識的邏輯系統(除法整除約數和倍數)來安排的,這種概念的揭示,從抽象到抽象,沒有學生親身經歷的過程,也無須學生借助原有經驗的自主建構,學生獲得的概念是刻板、冰冷的。如果能借助學生的操作和想象活動,喚起學生的因倍意識,自主建構起因數和倍數的意義,那么學生獲得的概念必然是生動的、有意義的。
2.解決問題變關注結果為對話生成。要找出一個數的幾個因數并不難,難就難在找出這個數的所有因數。這里有一個方法問題。是把方法簡單地告訴學生,迫切地尋求結果,還是給學生充分的探究時間,讓他們通過獨立思考、交流討論,從而發現問題、解決問題呢?很多成功的教學表明,在教學中為學生營造出一個對話場,在生生、師生多角度、多層面的對話中,能讓師生彼此分享經驗、溝通思考,生成新的看法。
3.教學宗旨變關注知識為啟迪智慧。知識關乎事物,智慧關乎人生;知識是理念的外化,智慧是人生的反觀。從知識課堂走向智慧課堂,為學生的智慧成長而教,應成為我們數學教學的傾心追求。怎樣通過對因數和倍數內涵的深度挖掘,在教給學生數學知識的同時,更教會他們數學思考的方法,讓他們在數學課堂上釋放潛能,開啟心智?這是我設計因數和倍數這堂課的宗旨所在。
教學目標:
1.通過活動建構,使學生領會因數和倍數的意義;通過獨立思考、交流談論,初步掌握求一個數所有因數的方法。
2.在解決問題的過程中,培養學生思維的有序性、條理性,增強學生的探究意識和求索精神。
3.通過教學,讓學生從中感受到數學思考的魅力,體驗到數學學習的樂趣。教學準備:
練習紙、學號卡等。
教學重、難點:
掌握求一個數的所有因數的方法,學會有序地進行思考。
教學流程:
一、意義建構
1.用12個同樣的小正方形擺一個長方形,可以怎樣擺?能不能舉一道簡單的乘法算式,把你心目中的擺法表示出來?(請一位學生回答)
2.猜猜他可能是怎樣擺的?
(根據學生回答依次出現相應的兩種擺法,隨后隱去第二種)
3.還可以怎樣擺?同樣用一道乘法算式表示出來。
(再請一位學生回答)
4.他又可能是怎樣擺的?
(根據學生回答屏幕顯示另外兩種擺法,隨后隱去第二種)
5.還可以怎樣擺?
(請學生回答)
6.能想象出他的擺法嗎?
(根據學生回答屏幕顯示最后兩種擺法,隨后隱去第二種)
此時屏幕上出現三種擺法。在三種擺法右側分別出現三道乘法算式。
7.通過剛才的學習,我們發現,用12個同樣的小正方形,可以擺出三種不同的長方形,由此我們還得出三道不一樣的乘法算式。以43=12為例,43=12,從數學的角度看,我們可以說4是12的因數,3也是她的因數。反過來,我們還可以說,12是4的倍數,12也是3的倍數。這就是我們今天要研究的因數和倍數。
(板書課題:因數和倍數)
8.結合另外兩道乘法算式,你能分別說一說誰是誰的因數,誰是誰的倍數嗎?
(請同座兩個學生相互說一說)
9.為了研究的方便,在研究因數和倍數時,我們所說的數專指不是零的自然數。
[設計理念:因數與倍數這節內容,傳統教材是按數學知識的邏輯系統安排的,在除法和整除的基礎上,由整除直接演繹推理出來的。這種概念的揭示從抽象到抽象,沒有學生經歷的過程,學生獲得的概念是刻板的、冰冷的。而本環節設計旨在讓學生借助表象進行操作和想像活動,自主體驗數與形的結合以及其中的因倍關系,進而生成因數和倍數的意義。這種意義的建構是基于學生原有經驗之上的,是學生自主操作、積極思考的結果。]
二、方法滲透
1.根據44=16、40016=25這兩個算式,你能分別說一說誰是誰的因數,誰是誰的倍數嗎?
(指名回答)
2.當兩個因數相同時,通常只需要說出或寫出一個,這是數學上的規定。我們能不能說16是因數,或者說16是倍數?
(組織學生討論)
3.因數和倍數它們是一種相互依存的關系。
(板書:相互依存)
4.下面我們一塊來找一找100的因數有哪些?同學們可以同座兩人合作,也可以獨立思考。
(教師巡視。并選擇一份作業,用實物投影展示出來)
5.對照你們自己找出的100的所有因數,你想對這位同學說些什么?
(根據學生回答,教師相機進行引導、評價)
6.對于剛才幾位同學的回答,你們還有沒有什么需要補充的或提問的?
7.比較這幾種方法,你發現了什么?
8.回顧剛才的過程,你覺得要找出一個數的所有因數,有什么訣竅?
(通過對話、討論,讓學生體會思考的合理性、有序性)
9.當然,如果要找出一個很大數目的所有因數,用這種方法可能會比較麻煩,我們將在今后的學習中進一步來研究。
[設計理念:如何找出100的所有因數,教學中,教師沒有急切地認定結果,也沒有簡單地把方法告訴學生,而是先讓學生或同座兩人合作,或獨立思考。通過多角度、多層面的交流與對話,師生之間彼此分享經驗、溝通思考。在解決問題的過程中,學生的思維能力得到了提高,情感、態度、價值觀得到了升華。]
三、鞏固深化
(課件顯示:下面哪些數一定是□□的因數。
1、2、3、4、5、6、7、8、9、10)
1.方框后面藏著個兩位數,看誰能很快說出下面10個數中,哪些是它的因數?
(單擊一下,出示21)
2.接著出示□4,哪些是它的因數呢?說說你的想法?
3.要使這個數一定有因數2,那么個位上還可以是哪些數字?
4.出示0。你知道除了1和2外,還有哪些數也是它的因數?
5.最后出示。這一次,十位和個位上的數字都看不清了,你還能找到答案嗎?
[設計理念:設計這一組變式練習,一方面使學生進一步掌握找一個數的因數的方法,另一方面又巧妙滲透了能被2整除的數的特征,體現了數學學習的綜合性、連貫性。]
四、360度的優點
1.我們已經知道了一直角等于90度,一圓周角等于360度。可是你們知道嗎?從前,法國人曾將一直角定為100度,這樣一圓周角就是400度。但是后來卻沒有能行得通。這是什么道理呢?一圓周角等于360度又有什么優點呢?
2.我們先來找一找360和400的因數各有多少個?
(分別出示360和400的所有因數。)
3.原來其中一個重要的原因,就是360的因數比400的因數多,多9個。一圓周角定為360度,當我們需要計算一圓周角的幾分之一時,可以在23種情況下得到整度數。
課件顯示:
2等分:360/2=180;3等分:360/3=120;
4等分:360/4=90;5等分:360/5=72;
90等分:360/90=4;120等分:360/120=3;
180等分:360/180=2;360等分:360/360=1)
而如果把一圓周角定為400度,那么只有在14種等分情況下才能得到整度數。相比之下,當然360度要方便多了。
[設計理念:為什么法國人將一圓周角定分400度沒能行得通?一圓周角定為360度有什么優點?學生通過猜想、比較,了解到這些竟然與因數的多少有關,從中學生真切地感受到數學的有趣、神奇。數學在學生心目中不再是陌生、晦澀的,而是生動有趣的,她就在你我的身邊。]
五、游戲中的發現
1.請學生拿出學號卡,在紙上寫下你的學號數的所有因數。
2.在這些數中,因數的個數最少的是幾?(對1)雖然1是因數個數最少的一個數,但它卻又是最受歡迎的一個數,你們知道為什么嗎?
3.除了1以外,你覺得還有哪些數比較特別的?
(找2或5號同學。)
4.你這個數特別在哪兒?像這樣的數還有哪些?請把學號卡舉起來。
(課件顯示:只有兩個因數的有:2、3、5、7、11)
5.除了這些數外,其余的數各有多少個因數?(對4)你有?(對6)你呢?
6.這些數,它們的因數個數多少不一,各不相同。同學們猜一猜在它們中間因數個數最多的是那一個?你覺得?理由是?你有什么辦法可以把這個數盡快地找出來?
7.如果讓同學們將這51個數按照它們因數個數的不同,來分一分類,你們準備怎樣分?其實不光這51個數,把所有的自然數按照因數個數的不同來分類,都可以分成這樣的三類。
8.今天這節課我們就上到這兒,關于因數和倍數,還有許多的`知識等著我們去學習,去研究,去探索
9.組織學生分批退場。
(1)請學號數不少于三個因數的同學先退場;
(2)請學號數只有兩個因數的同學退場;
(3)請學號數只有一個因數的同學跟我一起離場。
[設計理念:通過尋找自己學號數的所有因數,既使學生進一步熟悉找一個數的因數的方法,又讓學生感知到自然數的因數個數各有不同,為后面學習質數與合數埋下伏筆;組織學生分批退場,既檢驗了學生學習的效果,又營造了一種輕松、愉悅的氣氛。正所謂課已畢,趣猶在。]
因數倍數教案篇3
學習內容:
人教版小學數學五年級下冊第17、18頁。
學習目標:
1.我能掌握2、5的倍數的特征,并利用特征判斷一個數是不是2、5的倍數。
2.我知道什么是奇數和偶數。
學習重點:
了解2、5的倍數的特征及奇數和偶數的含義。
學習難點:
能正確地求出符合要求的數。
學前準備:
收集電影票。
教學過程:
一、導入新課
二、檢查獨學
1.互動,檢查獨學部分第1、2題完成情況。
2.質疑探討。
三、合作探究
(一)2、5的倍數的特征
1.小組合作。
仔細回顧獨學題2,再與同伴分享自己的收獲。
2.小組代表展示匯報。
3.小組合作交流,驗證規律。
討論:是不是所有2的倍數個位上都是0、2、4、6、8?所有5的倍數個位上都是5或0呢?
我們的想法:
小組代表匯報、總結。
4.試試身手。
(1)獨立完成第18頁“做一做”。
(2)集體交流。我又發現了:
(二)奇數和偶數
1.自主閱讀教材。根據自學內容,我知道:
根據是否是2的倍數,可把自然數分為和兩類。是2的倍數的數叫做,不是2的倍數的數叫做。
2.組內交流,并討論:0是不是2的倍數?為什么?
3.匯報總結。
4.我能說出身邊的奇數和偶數。
5.做一做(第17頁)。
因數倍數教案篇4
教學目標:
1、通過操作活動得出相應的乘除法算式,幫助學生理解倍數和因數的意義;探索求個數的倍數和因數的方法,發現一個數倍數和因數的某些特征。
2、在探索一個數的倍數和因數的過程中培養學生觀察、分析、概括能力,培養有序思考能力。
3、通過倍數和因數之間的互相依存關系使學生感受數學知識的內在聯系,體會到數學內容的奇妙、有趣。
教學重點:理解倍數和因數的意義。
教學難點:探索求一個數的倍數和因數的方法。
教學準備:每桌準各12個一樣大小的正方形,每人準備一張自己學號的卡片。
設計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發學生持續的學習興趣;學生通過獨立思考、合作文流進行自主探索;教師引導學生掌握數學思考的方法。
教學過程:
一、智力競猜引入新課
1、讓學生進行智力競猜春暖花香的季節,公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學生能猜出三個人分別是孫子、爸爸、和爺爺)
2、孫子、爸爸、爺爺的名字分別是韓韓,韓有才、韓廣發。請學生以韓有才為中心介紹下三個人的關系。學生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導學生說出誰是誰的爸爸誰是準的兒子。
3、上述父子關系是一種互相依存的關系,在表述時一定要完整。并向學生說明自然數中某兩個數之間也有這種類似的依存關系倍數和因數。
設計說明:智力競猜走學生喜歡的形式,因為每個學生都有爭強好勝之心,競猜有兩個作用,一是激發學生的學習興趣,二是以此引出相互依存的關系,為理解倍數和因數的相互依存關系作鋪墊。
二、操作發現理解概念
1、師:智慧從手指問流出,通過操作我們能發現許多的知識。請同桌同學拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著哪些不同的乘除法算式。
2、請學生匯報不同的擺法,以及相應的乘除法算式。(乘法算式和除法算式分開寫)再向學生說明:如果一個圖形經過旋轉后和另一個圖形一樣,我們就認為這兩個圖形是一樣的,讓學生特重復的圖形和算式去掉。(板書三十乘法算式,和幾十相應的除法算式)
設計說明;讓學生寫出蘊涵的乘除法算式符合學生的知識基礎,學生有的可能用乘法表示,也有的可能用除法表示;讓學生將旋轉后相同的去掉,這是一次簡化,很多學生并不知道,需要指導,這樣可以使學生認識到事物的本質。
3、讓學生一起看乘法算式43=12,向學生指出:12是4的倍數,12也是3的倍數,4是12的因數,3也是12的因數。
4、先請一個學生站起來說一說.然后同桌的同學再互相說一說。
5、讓學生仿照說出62=12和121=12中哪個數是哪個數的倍數,哪個數是哪個數的因數。
6、學生相互出一道乘法算式,并說一說誰是誰的倍數,誰是誰的因數。學生可能會出現0()=0的情況,借此向學生說明我們研究因敷和倍數一般指不是0的自然數。
設計說明:倍數和因數是全新的概念,需要教師的傳授、講解,需要學生的適當記憶重復、仿照。當然,要使學生真正理解還必須舉一反三,通過互相舉例可以逐步完善學生對倍數和因數的認識,同時使學生明確倍數和因數的研究范圍。
7、以43=12與123=4為例,向學生說明后面的除法算式是由前面的乘法算式得到的,根據這個除法算式可以說誰是誰的倍數,誰是誰的因數,說好后再讓學生試一試其他幾個除法算式中的關系。
8、練習:根據下面的算式,說說哪個數是哪個數的因數,哪個數是哪個數的倍數,54=20357=53+4=7
(1)學生回答后引發學生思考:能不能說20是倍數,4是因數。使學生進一步理解倍數是兩個數之間的一種相互依存的關系,必須說哪個是哪個的倍數,因數也同樣如此。
(2)通過3+4=7使學生進一步理解倍數和因數都是建立在乘法或除法的基礎之上的。
設計說明:乘法和除法是一種互逆的關系,在學習中應該溝通它們之間的聯系;通過三道練習可以鞏固剛剛獲得的對倍數和因數的認識,將融會貫通落到實處。
三、探索方法發現特征
1、找一個數的因數。
(1)聯系板書的乘除法算式觀察思考12的因數有哪些,井想辦法找出15的所有因數。
(2)學生獨立思考,明白根據一個乘法(除法)算式可以找出15的兩個因數,在學生充分交流的基礎上引導學生有條理的一對一對說出15的因數。
(3)用一對一對的方法找出36的所有因數。可能有的學生根據乘法算式找的,也有的學生是根據除法算式找的,都應該給予肯定。
(4)引導學生觀察12、15、36的因數,說一說有什么發現。一個數的因數個數是有限的,其中最小的因數都是1,最大的都是它本身。
設計說明:先安排學生找一個數的因數可以使學生利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數的因數指明了方向。學生交流時突出了方法的多樣性,既可以根據乘法算式想,也可以根據除法算式想,交流后引導學生一對一對的找是必要的,它可以培養學生的有序思考。最后引導學生觀察。使學生自主發現、歸納出一個數的因數的某些特征。
2、找一個數的倍數。
(1)讓學生找3的倍數,比一比誰找得多。
(2)學生匯報后,引導學生有序思考,并得出3的倍數可以用3乘連續的自然數1、2、3,3的倍數的個數是無限的,所以寫3的倍數時要借助省略號表示結果。
(3)找出2的倍數和5的倍數,并引導學生觀察3、2、5的倍數情況,說一說有什么發現。一個數的倍數個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。
設計說明:讓學生比一比誰找的倍數多,可以使學生產生認知沖突,認識到一個數的倍數個數是無限的,在學生匯報后同樣需要引導學生的有序思考,需要引導學生自主發現、歸納一個數倍數的特征。
四、鞏固練習
師;剛才同學們認識了倍數和因數,并且探索了求一個數因數和倍數的方法,想不想檢查一下自己掌握得如何?
1、想想做做的第l題。學生表述后強調哪個是哪個的倍數(或因數)。
2、想想做做的第2題。學生填好后引導學生說一說:表中的應付元數其實都是什么?表格中為什么用省略號?
3、想想做做的第3題。學生填好后引導學生說一說:表格中所有數都是什么?這個表格中為什么沒有省略號?
4、游戲找朋友。讓學生拿出各自的學號卡片,找出自己學號數的所有因數,使學生發現每個學號數的因數都在全班的學號數以內;再讓學生找一找自己學號數的倍數,井說一說能不能在全班學號數內部找到一個,還有其他的嗎?
設計說明:第l題是基礎練習.可以鞏固對倍數和因數的認識,2、3兩題聯系實際,使學生感悟到其中蘊藏著求一個數倍數和因數的方法,以及倍數和因數的某些特征。第4題通過游戲活動進一步激發學生持續的學習熱情,而且可以綜合應用求倍數和因數的方法,再次認識到倍數和因數的某些特征。
五、自我梳理探索延伸
1、通過這節課的學習你有什么收獲?向你的同伴介紹一下。
2、生活中許多現象與我們學習的倍數和因數的知識有關,課后同學們可以利用今天所學的知識探索一下1小時等于60分的好處。通過探索使學生明白由于60的因數是兩位數中最多的,可以方便計算。
設計說明:向同伴介紹自己的收獲可以將課堂中學到的知識進行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數和因數的相關知識,溝通知識間的聯系,拓展學生的知識面,使學生認識到數學知識的應用價值。
因數倍數教案篇5
一、教學內容
1.因數和倍數
2.2、5、3的倍數的特征
3.質數和合數
二、教學目標
1.使學生掌握因數、倍數、質數、合數等概念,知道有關概念之間的聯系和區別。
2.使學生通過自主探索,掌握2、5、3的倍數的特征。
3.逐步培養學生的數學抽象能力。
三、編排特點
精簡概念,減輕學生記憶負擔。
四、方面的調整:
a.不再出現“整除”概念,直接從乘法算式引出因數和倍數的概念。
b.不再正式教學“分解質因數”,只作為閱讀性材料進行介紹。
c.公因數、公因數、公倍數、最小公倍數移至“分數的意義和性質”單元,作為約分和通分的知識基礎,更突出其應用性。
注意體現數學的抽象性。
數論知識本身具有抽象性。學生到了高年級也應注意培養其抽象思維。
五、具體編排
1.因數和倍數
因數和倍數的概念
過去:用÷=表示能被整除,÷=表示能被整除。
現在:用=直接引出因數和倍數的概念。
(1)用2×6=12給出因數和倍數的概念。
(2)用3×4=12進一步鞏固上述概念。
(3)讓學生利用因數和倍數的概念自主發現12的其他因數。
(4)可引導學生利用一般的乘法算式×=歸納出因數和倍數的概念。
(5)說明本單元的研究范圍。
注意以下幾點:
(1)雖然不出現“整除”一詞,但本質上仍是以整除為基礎,因此,乘法算式中的乘數和積都必須是整數。
(2)因數和倍數是一對相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CHTS 10042-2021小客車專用高速公路工程技術指南
- T/CHSDA 0001-2024公路工程建設期碳排放計算標準
- T/CHC 2001-2020生殖健康咨詢服務規范
- T/CECS 10370-2024給水用不銹鋼溝槽式管件
- T/CECS 10319-2023鋼渣透水混凝土磚
- T/CECS 10192-2022聚合物微水泥
- T/CECS 10057-2019綠色建材評價建筑用閥門
- T/CCPITCSC 095-2022數字化人力資源服務分類及通用要求
- T/CCMA 0106-2020塔式起重機司機室
- T/CBMMA 2-2019輥壓機用減速機在線監測系統與功能規范
- 2025信息技術綠色發展行動計劃
- CNAS-CL31-2011 內部校準要求
- 2024年7月國家開放大學專科《高等數學基礎》期末紙質考試試題及答案
- 福建省普通高中2023年學業水平合格性考試數學試題(原卷版)
- 2025年小學一年級數學下冊無紙筆化評價方案及檢測題
- 法規解讀丨2024新版《突發事件應對法》及其應用案例
- 變更羈押強制措施申請書
- 【MOOC】電化學-浙江大學 中國大學慕課MOOC答案
- 八項工程統計工作方案
- 2024年建設工程監理人員技能競賽理論考試題庫(含答案)
- 外傷致肺癌骨轉移患者腰椎壓縮性骨折法醫學鑒定
評論
0/150
提交評論