




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.一5的絕對值是()A.5 B. C. D.-52.我國民間,流傳著許多含有吉祥意義的文字圖案,表示對幸福生活的向往,良辰佳節的祝賀.比如下列圖案分別表示“福”、“祿”、“壽”、“喜”,其中是中心對稱圖形的是()A.①③ B.①④ C.②③ D.②④3.在下列幾何體中,主視圖、左視圖和俯視圖形狀都相同的是()A. B. C. D.4.如圖,Rt△ABC中,∠C=90°,∠B=30°,分別以點A和點B為圓心,大于的長為半徑作弧,兩弧相交于M、N兩點,作直線MN,交BC于點D,連接AD,則∠CAD的度數是()A.20° B.30° C.45° D.60°5.如圖,正方形網格中,每個小正方形的邊長均為1個單位長度.,在格點上,現將線段向下平移個單位長度,再向左平移個單位長度,得到線段,連接,.若四邊形是正方形,則的值是()A.3 B.4 C.5 D.66.如圖,在菱形中,,,,則的值是()A. B.2 C. D.7.如圖,正三角形ABC的邊長為4cm,D,E,F分別為BC,AC,AB的中點,以A,B,C三點為圓心,2cm為半徑作圓.則圖中陰影部分面積為()A.(2-π)cm2 B.(π-)cm2 C.(4-2π)cm2 D.(2π-2)cm28.一元二次方程x2=9的根是()A.3 B.±3 C.9 D.±99.菱形的兩條對角線長分別為60cm和80cm,那么邊長是()A.60cm B.50cm C.40cm D.80cm10.如圖,AB與CD相交于點E,點F在線段BC上,且AC//EF//DB,若BE=5,BF=3,AE=BC,則的值為()A. B. C. D.11.下列是一元二次方程的是()A. B. C. D.12.下列方程中,關于x的一元二次方程是()A.3(x+1)2=2(x+1) B.+-2=0C.ax2+bx+c=0 D.x2+2x=x2-1二、填空題(每題4分,共24分)13.小亮在投籃訓練中,對多次投籃的數據進行記錄.得到如下頻數表:投籃次數20406080120160200投中次數1533496397128160投中的頻率0.750.830.820.790.810.80.8估計小亮投一次籃,投中的概率是______.14.若m是方程5x2﹣3x﹣1=0的一個根,則15m﹣+2010的值為_____.15.如圖,已知反比例函數y=(k為常數,k≠0)的圖象經過點A,過A點作AB⊥x軸,垂足為B,若△AOB的面積為1,則k=________________.16.一枚質地均勻的骰子,其六個面上分別標有數字:1,2,3,4,5,6,投擲一次,朝上一面的數字是偶數的概率是__________.17.如圖,在△ABC中,點D、E分別在△ABC的兩邊AB、AC上,且DE∥BC,如果,,,那么線段BC的長是______.18.半徑為4cm,圓心角為60°的扇形的面積為cm1.三、解答題(共78分)19.(8分)某班級元旦晚會上,有一個闖關游戲,在一個不透明的布袋中放入3個乒乓球,除顏色外其它都相同,它們的顏色分別是綠色、黃色和紅色.攪均后從中隨意地摸出一個乒乓球,記下顏色后放回,攪均后再從袋中隨意地摸出一個乒乓球,如果兩次摸出的球的顏色相同,即為過關.請用畫樹狀圖或列表法求過關的概率.20.(8分)如圖,在平面直角坐標系中,點A的坐標為(m,m),點B的坐標為(n,﹣n),拋物線經過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點C,已知實數m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.(1)求拋物線的解析式;(2)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側),連接OD、BD①當△OPC為等腰三角形時,求點P的坐標;②求△BOD面積的最大值,并寫出此時點D的坐標.21.(8分)如圖,點O為∠ABC的邊上的一點,過點O作OM⊥AB于點,到點的距離等于線段OM的長的所有點組成圖形.圖形W與射線交于E,F兩點(點在點F的左側).(1)過點作于點,如果BE=2,,求MH的長;(2)將射線BC繞點B順時針旋轉得到射線BD,使得∠,判斷射線BD與圖形公共點的個數,并證明.22.(10分)如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E,(1)求證:CD為⊙O的切線;(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結果保留π)23.(10分)解下列方程(1)(2)24.(10分)平面直角坐標系中,矩形OABC的頂點A,C的坐標分別為,,點D是經過點B,C的拋物線的頂點.(1)求拋物線的解析式;(2)點E是(1)中拋物線對稱軸上一動點,求當△EAB的周長最小時點E的坐標;(3)平移拋物線,使拋物線的頂點始終在直線CD上移動,若平移后的拋物線與射線BD只有一個公共點,直接寫出平移后拋物線頂點的橫坐標的值或取值范圍.25.(12分)如圖,在一塊長8、寬6的矩形綠地內,開辟出一個矩形的花圃,使四周的綠地等寬,已知綠地的面積與花圃的面積相等,求花圃四周綠地的寬.26.如圖,已知拋物線y=x2-x-3與x軸的交點為A、D(A在D的右側),與y軸的交點為C.(1)直接寫出A、D、C三點的坐標;(2)若點M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點M的坐標;(3)設點C關于拋物線對稱軸的對稱點為B,在拋物線上是否存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形?若存在,請求出點P的坐標;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、A【解析】試題分析:根據數軸上某個數與原點的距離叫做這個數的絕對值的定義,在數軸上,點﹣5到原點的距離是5,所以﹣5的絕對值是5,故選A.2、D【分析】根據中心對稱圖形的定義,結合選項所給圖形進行判斷即可.【詳解】解:①不是中心對稱圖形,故本選項不合題意;②是中心對稱圖形,故本選項符合題意;③不是中心對稱圖形,故本選項不合題意;④是中心對稱圖形,故本選項符合題意;故選:D.【點睛】本題考查了中心對稱圖形的定義,熟悉掌握概念是解題的關鍵3、C【分析】主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.依次找到主視圖、左視圖和俯視圖形狀都相同的圖形即可.【詳解】解:A、圓臺的主視圖和左視圖相同,都是梯形,俯視圖是圓環,故選項不符合題意;B、三棱柱的主視圖和左視圖、俯視圖都不相同,故選項不符合題意;C、球的三視圖都是大小相同的圓,故選項符合題意.D、圓錐的三視圖分別為等腰三角形,等腰三角形,含圓心的圓,故選項不符合題意;故選C.【點睛】本題考查了三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.4、B【分析】根據內角和定理求得∠BAC=60°,由中垂線性質知DA=DB,即∠DAB=∠B=30°,從而得出答案.【詳解】在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B-∠C=60°,由作圖可知MN為AB的中垂線,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC-∠DAB=30°,故選B.【點睛】本題主要考查作圖-基本作圖,熟練掌握中垂線的作圖和性質是解題的關鍵.5、A【分析】根據線段的平移規律可以看出,線段AB向下平移了1個單位,向左平移了2個單位,相加即可得出.【詳解】解:根據線段的平移規律可以看出,線段AB向下平移了1個單位,向左平移了2個單位,得到A'B',則m+n=1.故選:A【點睛】本題考查的是線段的平移問題,觀察圖形時要考慮其中一點就行.6、B【分析】由菱形的性質得AD=AB,由,求出AD的長度,利用勾股定理求出DE,即可求出的值.【詳解】解:在菱形中,有AD=AB,∵,AE=ADAD3,∴,∴,∴,∴,∴;故選:B.【點睛】本題考查了三角函數,菱形的性質,以及勾股定理,解題的關鍵是根據三角函數值正確求出菱形的邊長,然后進行計算即可.7、C【分析】連接AD,由等邊三角形的性質可知AD⊥BC,∠A=∠B=∠C=60°,根據S陰影=S△ABC-3S扇形AEF即可得出結論.【詳解】連接AD,∵△ABC是正三角形,∴AB=BC=AC=4,∠BAC=∠B=∠C=60°,∵BD=CD,∴AD⊥BC,∴AD==,∴S陰影=S△ABC-3S扇形AEF=×4×2﹣=(4﹣2π)cm2,故選C.【點睛】本題考查了有關扇形面積的計算,熟記扇形的面積公式是解答此題的關鍵.8、B【解析】兩邊直接開平方得:,進而可得答案.【詳解】解:,兩邊直接開平方得:,則,.故選:B.【點睛】此題主要考查了直接開平方法解一元二次方程,解這類問題一般要移項,把所含未知數的項移到等號的左邊,把常數項移項等號的右邊,化成的形式,利用數的開方直接求解.9、B【分析】根據菱形的對角線互相垂直平分求出OA、OB的長,再利用勾股定理列式求出邊長AB,然后根據菱形的周長公式列式進行計算即可得解.【詳解】解:如圖,∵菱形的兩條對角線的長是6cm和8cm,∴OA=×80=40cm,OB=×60=30cm,又∵菱形的對角線AC⊥BD,∴AB==50cm,∴這個菱形的邊長是50cm.故選B.【點睛】本題考查了菱形的性質,勾股定理的應用,主要利用了菱形的對角線互相垂直平分的性質.10、A【分析】根據平行線分線段成比例定理得可求出BC的長,從而可得CF的長,再根據平行線分線段成比例定理得,求解即可得.【詳解】又,解得又故選:A.【點睛】本題考查了平行線分線段成比例定理,根據定理求出BC的長是解題關鍵.11、A【分析】用一元二次方程的定義,1看等式,2看含一個未知數,3看未知數次數是2次,4看二次項系數不為零,5看是整式即可.【詳解】A、由定義知A是一元二次方程,B、不是等式則B不是一元二次方程,C、二次項系數a可能為0,則C不是一元二次方程,D、含兩個未知數,則D不是一元二次方程.【點睛】本題考查判斷一元二次方程問題,關鍵是掌握定義,注意特點1看等式,2看含一個未知數,3看未知數次數是2次,4看二次項數系數不為零,5看是整式.12、A【分析】依據一元二次方程的定義判斷即可.【詳解】A.3(x+1)2=2(x+1)是一元二次方程,故A正確;B.+-2=0是分式方程,故B錯誤;C.當a=0時,方程ax2+bx+c=0不是一元二次方程,故C錯誤;D.x2+2x=x2-1,整理得2x=-1是一元一次方程,故D錯誤;故選A.【點睛】此題考查一元二次方程的定義,解題關鍵在于掌握其定義.二、填空題(每題4分,共24分)13、0.1【分析】由小亮每次投籃的投中的頻率繼而可估計出這名球員投一次籃投中的概率.【詳解】解:∵0.75≈0.1,0.13≈0.1,0.12≈0.1,0.79≈0.1,…,∴可以看出小亮投中的頻率大都穩定在0.1左右,∴估計小亮投一次籃投中的概率是0.1,故答案為:0.1.【點睛】本題比較容易,考查了利用頻率估計概率.大量反復試驗下頻率值即概率.概率=所求情況數與總情況數之比.14、1【分析】根據m是方程5x2﹣3x﹣1=0的一個根代入得到5m2﹣3m﹣1=0,進一步得到5m2﹣1=3m,兩邊同時除以m得:5m﹣=3,然后整體代入即可求得答案.【詳解】解:∵m是方程5x2﹣3x﹣1=0的一個根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,兩邊同時除以m得:5m﹣=3,∴15m﹣+2010=3(5m﹣)+2010=9+2010=1,故答案為:1.【點睛】本題考查了一元二次方程的根,靈活的進行代數式的變形是解題的關鍵.15、-1【解析】試題解析:設點A的坐標為(m,n),因為點A在y=的圖象上,所以,有mn=k,△ABO的面積為=1,∴=1,∴=1,∴k=±1,由函數圖象位于第二、四象限知k<0,∴k=-1.考點:反比例外函數k的幾何意義.16、【解析】試題分析:骰子共有六個面,每個面朝上的機會是相等的,而奇數有1,3,5;根據概率公式即可計算.試題解析:∵骰子六個面中奇數為1,3,5,∴P(向上一面為奇數)=.考點:概率公式.17、;【分析】根據DE∥BC可得,再由相似三角形性質列比例式即可求解.【詳解】解:,,,又∵,,,,解得:故答案為:.【點睛】本題主要考查了平行線分線段成比例定理的應用,找準對應線段是解題的關鍵.18、.【解析】試題分析:根據扇形的面積公式求解.試題解析:.考點:扇形的面積公式.三、解答題(共78分)19、.【分析】先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果.【詳解】解:畫樹狀圖如下:共有9種等可能的結果數,其中兩次摸出的球的顏色相同的結果數為3,所以過關的概率是=.【點睛】本題的考點是樹狀圖法.方法是根據題意畫出樹狀圖,由樹狀圖得出答案.20、(1)拋物線的解析式為;(2)①P點坐標為P1()或P2()或P2();②D().【分析】(1)首先解方程得出A,B兩點的坐標,從而利用待定系數法求出二次函數解析式即可.(2)①首先求出AB的直線解析式,以及BO解析式,再利用等腰三角形的性質得出當OC=OP時,當OP=PC時,點P在線段OC的中垂線上,當OC=PC時分別求出x的值即可.②利用S△BOD=S△ODQ+S△BDQ得出關于x的二次函數,從而得出最值即可.【詳解】解:(1)解方程x2﹣2x﹣2=0,得x1=2,x2=﹣1.∵m<n,∴m=﹣1,n=2.∴A(﹣1,﹣1),B(2,﹣2).∵拋物線過原點,設拋物線的解析式為y=ax2+bx.∴,解得:.∴拋物線的解析式為.(2)①設直線AB的解析式為y=kx+b.∴,解得:.∴直線AB的解析式為.∴C點坐標為(0,).∵直線OB過點O(0,0),B(2,﹣2),∴直線OB的解析式為y=﹣x.∵△OPC為等腰三角形,∴OC=OP或OP=PC或OC=PC.設P(x,﹣x).(i)當OC=OP時,,解得(舍去).∴P1().(ii)當OP=PC時,點P在線段OC的中垂線上,∴P2().(iii)當OC=PC時,由,解得(舍去).∴P2().綜上所述,P點坐標為P1()或P2()或P2().②過點D作DG⊥x軸,垂足為G,交OB于Q,過B作BH⊥x軸,垂足為H.設Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ?OG+DQ?GH=DQ(OG+GH)==.∵0<x<2,∴當時,S取得最大值為,此時D().【點睛】本題考查的是二次函數綜合運用,涉及到一次函數、解一元二次方程、圖形的面積計算等,其中(2)要注意分類求解,避免遺漏.21、(1)MH=;(2)1個.【分析】(1)先根據題意補全圖形,然后利用銳角三角函數求出圓的半徑即OM的長度,再利用勾股定理求出BM的長度,最后利用可求出MH的長度.(2)過點O作⊥于點,通過等量代換可知∠∠,從而利用角平分線的性質可知,得出為⊙的切線,從而可確定公共點的個數.【詳解】解:(1)∵到點的距離等于線段的長的所有點組成圖形,∴圖形是以為圓心,的長為半徑的圓.根據題意補全圖形:∵于點M,∴∠.在△中,,∴.∵∴,解得:.∴.在△中,,∴.∵∴∴.(2)解:1個.證明:過點O作⊥于點,∵∠∠,且∠∠,∴∠∠.∴.∴為⊙的切線.∴射線與圖形的公共點個數為1個.【點睛】本題主要考查解直角三角形和直線與圓的位置關系,掌握圓的相關性質,勾股定理和角平分線的性質是解題的關鍵.22、(1)見解析;(2)【分析】(1)連接OD,由BC是⊙O的切線,可得∠ABC=90°,由CD=CB,OB=OD,易證得∠ODC=∠ABC=90°,即可證得CD為⊙O的切線.(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的長,∠BOD的度數,又由,即可求得答案.【詳解】解:(1)證明:連接OD,∵BC是⊙O的切線,∴∠ABC=90°.∵CD=CB,∴∠CBD=∠CDB.∵OB=OD,∴∠OBD=∠ODB.∴∠ODC=∠ABC=90°,即OD⊥CD.∵點D在⊙O上,∴CD為⊙O的切線.(2)在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=.∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴.23、(1);(2).【分析】(1)方程變形后,利用因式分解法即可求解;(2)方程變形后,利用因式分解法即可求解.【詳解】(1)方程變形得:,
分解因式得:,
即:或,∴;(2)方程變形得:,
分解因式得:,
即:或,∴.【點睛】本題考查了一元二次方程的解法,靈活運用因式分解法是解決本題的關鍵.24、(1);(2);(3)或【分析】(1)根據題意可得出點B的坐標,將點B、C的坐標分別代入二次函數解析式,求出b、c的值即可.(2)在對稱軸上取一點E,連接EC、EB、EA,要使得EAB的周長最小,即要使EB+EA的值最小,即要使EA+EC的值最小,當點C、E、A三點共線時,EA+EC最小,求出直線AC的解析式,最后求出直線AC與對稱軸的交點坐標即可.(3)求出直線CD以及射線BD的解析式,即可得出平移后頂點的坐標,寫出二次函數頂點式解析式,分類討論,如圖:①當拋物線經過點B時,將點B的坐標代入二次函數解析式,求出m的值,寫出m的范圍即可;②當拋物線與射線恰好只有一個公共點H時,將拋物線解析式與射線解析式聯立可得關于x的一元二次方程,要使平移后的拋物線與射線BD只有一個公共點,即要使一元二次方程有兩個相等的實數根,即,列式求出m的值即可.【詳解】(1)矩形OABC,OC=AB,A(2,0),C(0,3),OA=2,OC=3,B(2,3),將點B,C的坐標分別代入二次函數解析式,,,拋物線解析式為:.(2)如圖,在對稱軸上取一點E,連接EC、EB、EA,當點C、E、A三點共線時,EA+EC最小,即EAB的周長最小,設直線解析式為:y=kx+b,將點A、C的坐標代入可得:,解得:,一次函數解析式為:.=,D(1,4),令x=1,y==.E(1,).(3)設直線CD解析式為:y=kx+b,C(0,3),D(1,4),,解得,直線CD解析式為:y=x+3,同理求出射線BD的解析式為:y=-x+5(x≤2),設平移后的頂點坐標為(m,m+3),則拋物線解析式為:y=-(x-m)2+m+3,①如圖,當拋物線經過點B時,-(2-m)2+m+3=3,解得m=1或4,當1<m≤4時,平移后的拋物線與射線只有一個公共點;②如圖,當拋物線與射線恰好只有一個公共點H時,將拋物線解析式與射線解析式聯立可得:-(x-m)2+m+3=-x+5,即x2-(2m+1)x+m2-m+2=0,要使平移后的拋物線與射線BD只有一個公共點,即要使一元二次方程有兩個相等的實數根,,解得.綜上所述,或時,平移后的拋物線與射線BD只有一個公共點.【點睛】本題為二次函數、一次函數與幾何、一元二次方程方程綜合題,一般作為壓軸題,主要考查了圖形的軸對稱、二次函數的平移、函數解析式的求解以及二次函數與一元二次方程的關系,本題關鍵在于:①將三角形的周長最小問題轉化為兩線段之和最小問題,利用軸對稱的性質解題;②將二次函數與一次函數的交點個數問題轉化為一元二次方程實數根的個數問題.25、花圃四周綠地的寬為1m【分析】設花圃四周綠地的寬為x米,根據矩形花圃的面積=矩形綠地面積的一半列方程求解即可.【詳解】解:設花圃四周綠地的寬為xm,由題意,得:(6-2x)(8
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 羽毛球知到課后答案智慧樹章節測試答案2025年春陜西財經職業技術學院
- 醇基油合同范本
- 2025YY項目防火工程分包合同
- 家庭施工安裝合同范本
- 2025年進出口合同實訓題目
- 2024年寧國市市屬事業單位考試真題
- 2024年魯控環保科技有限公司招聘真題
- 2024年德州武城縣人民醫院招聘備案制工作人員真題
- 2024年北京昌平區衛生健康委員會招聘事業單位人員真題
- 2024年阿拉善職業技術學院專任教師招聘真題
- 2025年鉛鋅礦項目可行性研究報告
- 防春困防疲勞駕駛課件
- 玻璃更換施工方案
- 2025年中國職工保險互助會貴州省辦事處招聘筆試參考題庫含答案解析
- 2025年生豬屠宰獸醫衛生檢疫人員考試題(附答案)
- 出生缺陷預防培訓課件
- 2025-2030中國靜電儀行業市場現狀分析及競爭格局與投資發展研究報告
- 中小學綜合實踐活動課程指導綱要:讓學生更好地了解活動的意義和價值
- NSA2000變頻器使用說明書
- 2025合伙事業利潤分成管理協議
- 2025年全球及中國包裹接收和追蹤軟件行業頭部企業市場占有率及排名調研報告
評論
0/150
提交評論