2025屆海南省臨高縣美臺中學九上數學期末經典試題含解析_第1頁
2025屆海南省臨高縣美臺中學九上數學期末經典試題含解析_第2頁
2025屆海南省臨高縣美臺中學九上數學期末經典試題含解析_第3頁
2025屆海南省臨高縣美臺中學九上數學期末經典試題含解析_第4頁
2025屆海南省臨高縣美臺中學九上數學期末經典試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆海南省臨高縣美臺中學九上數學期末經典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.將拋物線向上平移兩個單位長度,再向右平移一個單位長度后,得到的拋物線解析式是()A. B. C. D.2.一個不透明的袋子中裝有10個只有顏色不同的小球,其中2個紅球,3個黃球,5個綠球,從袋子中任意摸出一個球,則摸出的球是綠球的概率為()A. B. C. D.3.在△ABC中,∠C=Rt∠,AC=6,BC=8,則cosB的值是()A. B. C. D.4.順次連接邊長為的正六邊形的不相鄰的三邊的中點,又形成一個新的正三角形,則這個新的正三角形的面積等于()A. B. C. D.5.如圖,、、是的切線,、、是切點,分別交、于、兩點.如,則的度數為()A. B. C. D.6.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數y=(k<0)的圖象經過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣367.已知是方程的一個根,則代數式的值等于()A.3 B.2 C.0 D.18.已知⊙O的半徑為4cm.若點P到圓心O的距離為3cm,則點P()A.在⊙O內 B.在⊙O上C.在⊙O外 D.與⊙O的位置關系無法確定9.如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(1,0)和B,與y軸的正半軸交于點C,下列結論:①abc>0;②4a﹣2b+c>0;③2a﹣b>0,其中正確的個數為()A.0個 B.1個 C.2個 D.3個10.下列方程中是關于的一元二次方程的是()A. B. C., D.二、填空題(每小題3分,共24分)11.已知二次函數(為常數),當取不同的值時,其圖象構成一個“拋物線系”.如圖分別是當取四個不同數值時此二次函數的圖象.發現它們的頂點在同一條直線上,那么這條直線的表達式是_________.12.如圖,∠AOB=90°,且OA、OB分別與反比例函數、的圖象交于A、B兩點,則tan∠OAB的值是______.13.的半徑為4,圓心到直線的距離為2,則直線與的位置關系是______.14.如圖,將△ABC繞點A逆時針旋轉的到△ADE,點C和點E是對應點,若∠CAE=90°,AB=1,則BD=_________.15.已知:如圖,在菱形ABCD中,F為邊AB的中點,DF與對角線AC交于點G,過G作GE⊥AD于點E,若AB=2,且∠1=∠2,則下列結論中一定成立的是_____(把所有正確結論的序號都填在橫線上).①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四邊形BFGC=﹣1.16.如圖,已知等邊,頂點在雙曲線上,點的坐標為(2,0).過作,交雙曲線于點,過作交軸于,得到第二個等邊.過作交雙曲線于點,過作交軸于點得到第三個等邊;以此類推,…,則點的坐標為______,的坐標為______.17.在直徑為4cm的⊙O中,長度為的弦BC所對的圓周角的度數為____________.18.小明發現相機快門打開過程中,光圈大小變化如圖1所示,于是他繪制了如圖2所示的圖形.圖2中留個形狀大小都相同的四邊形圍成一個圓的內接六邊形和一個小正六邊形,若PQ所在的直線經過點M,PB=5cm,小正六邊形的面積為cm2,則該圓的半徑為________cm.三、解答題(共66分)19.(10分)如圖,點是線段上的任意一點(點不與點重合),分別以為邊在直線的同側作等邊三角形和等邊三角形,與相交于點,與相交于點.(1)求證:;(2)求證:;(3)若的長為12cm,當點在線段上移動時,是否存在這樣的一點,使線段的長度最長?若存在,請確定點的位置并求出的長;若不存在,請說明理由.20.(6分)如圖,一位測量人員,要測量池塘的寬度的長,他過A、B兩點畫兩條相交于點的射線,在射線上取兩點D、E,使,若測得DE=37.2米,他能求出A、B之間的距離嗎?若能,請你幫他算出來;若不能,請你幫他設計一個可行方案.21.(6分)已知:如圖,點P是一個反比例函數的圖象與正比例函數y=﹣2x的圖象的公共點,PQ垂直于x軸,垂足Q的坐標為(2,0).(1)求這個反比例函數的解析式;(2)如果點M在這個反比例函數的圖象上,且△MPQ的面積為6,求點M的坐標.22.(8分)某商品現在的售價為每件60元,每星期可賣出300件.市場調查反映:如調整價格,每降價1元,每星期可多賣出20件.已知商品的進價為每件40元,如何定價才能使利潤最大?這個最大利潤是多少?23.(8分)已知二次函數y=ax2+bx﹣16的圖象經過點(﹣2,﹣40)和點(6,8).(1)求這個二次函數圖象與x軸的交點坐標;(2)當y>0時,直接寫出自變量x的取值范圍.24.(8分)如圖,陽光下,小亮的身高如圖中線段所示,他在地面上的影子如圖中線段所示,線段表示旗桿的高,線段表示一堵高墻.請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子;如果小亮的身高,他的影子,旗桿的高,旗桿與高墻的距離,請求出旗桿的影子落在墻上的長度.25.(10分)小明和小亮兩人一起玩投擲一個普通正方體骰子的游戲.(1)說出游戲中必然事件,不可能事件和隨機事件各一個;(2)如果兩個骰子上的點數之積為奇數,小明勝,否則小亮勝,你認為這個游戲公平嗎?如果不公平,誰獲勝的可能性較大?請說明理由.請你為他們設計一個公平的游戲規則.26.(10分)如圖,在中,是上的高..求證:.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】由平移可知,拋物線的開口方向和大小不變,頂點改變,將拋物線化為頂點式,求出頂點,再由平移求出新的頂點,然后根據頂點式寫出平移后的拋物線解析式.【詳解】解:,即拋物線的頂點坐標為,把點向上平移2個單位長度,再向右平移1個單位長度得到點的坐標為,所以平移后得到的拋物線解析式為.故選D.【點睛】本題考查了二次函數圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.2、D【解析】隨機事件A的概率P(A)=事件A可能出現的結果數÷所有可能出現的結果數.【詳解】解:綠球的概率:P==,故選:D.【點睛】本題考查概率相關概念,熟練運用概率公式計算是解題的關鍵.3、C【分析】利用勾股定理求出AB,根據余弦函數的定義求解即可.【詳解】解:如圖,在中,,,,,故選:C.【點睛】本題考查解直角三角形,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.4、A【分析】作AP⊥GH于P,BQ⊥GH于Q,由正六邊形和等邊三角形的性質求出GH=PG+PQ+QH=9cm,由等邊三角形的面積公式即可得出答案.【詳解】如圖所示:作AP⊥GH于P,BQ⊥GH于Q,如圖所示:

∵△GHM是等邊三角形,

∴∠MGH=∠GHM=60°,

∵六邊形ABCDEF是正六邊形,

∴∠BAF=∠ABC=120°,正六邊形ABCDEF是軸對稱圖形,

∵G、H、M分別為AF、BC、DE的中點,△GHM是等邊三角形,

∴AG=BH=3cm,∠MGH=∠GHM=60°,∠AGH=∠FGM=60°,

∴∠BAF+∠AGH=180°,

∴AB∥GH,

∵作AP⊥GH于P,BQ⊥GH于Q,

∴PQ=AB=6cm,∠PAG=90°-60°=30°,

∴PG=AG=cm,

同理:QH=cm,

∴GH=PG+PQ+QH=9cm,

∴△GHM的面積=GH2=cm2;

故選:A.【點睛】此題主要考查了正六邊形的性質、等邊三角形的性質及三角形的面積公式等知識;熟練掌握正六邊形和等邊三角形的性質是解題的關鍵.5、C【分析】連接OA、OB、OE,由切線的性質可求出∠AOB,再由切線長定理可得出∠COD=∠AOB,可求得答案.【詳解】解:連接OA、OE、OB,所得圖形如下:由切線性質得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,∴△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠AOB,∵∠APB=40°,∴∠AOB=140°,∴∠COD=70°.【點睛】本題考查了切線的性質及切線長定理,解答本題的關鍵是熟練掌握:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線,平分兩條切線的夾角.6、B【解析】解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數y=(k<0)的圖象經過點B,∴﹣4=,得k=﹣32.故選B.【點睛】本題主要考查菱形的性質和用待定系數法求反函數的系數,解此題的關鍵在于根據A點坐標求得OA的長,再根據菱形的性質求得B點坐標,然后用待定系數法求得反函數的系數即可.7、A【分析】根據題意,將代入方程得,移項即可得結果.【詳解】∵是方程的一個根,∴,∴,故選A.【點睛】本題考查一元二次方程的解,已知方程的根,只需將根代入方程即可.8、A【分析】根據點與圓的位置關系判斷即可.【詳解】∵點P到圓心的距離為3cm,而⊙O的半徑為4cm,∴點P到圓心的距離小于圓的半徑,∴點P在圓內,故選:A.【點睛】此題考查的是點與圓的位置關系,掌握點與圓的位置關系的判斷方法是解決此題的關鍵.9、C【分析】由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,進而判斷①;根據x=﹣2時,y>1可判斷②;根據對稱軸x=﹣1求出2a與b的關系,進而判斷③.【詳解】①由拋物線開口向下知a<1,∵對稱軸位于y軸的左側,∴a、b同號,即ab>1.∵拋物線與y軸交于正半軸,∴c>1,∴abc>1;故①正確;②如圖,當x=﹣2時,y>1,則4a﹣2b+c>1,故②正確;③∵對稱軸為x=﹣>﹣1,∴2a<b,即2a﹣b<1,故③錯誤;故選:C.【點睛】本題主要考查二次函數的圖象和性質,解題的關鍵是掌握數形結合思想的應用,注意掌握二次函數圖象與系數的關系.10、A【分析】根據一元二次方程的定義解答.【詳解】A、是一元二次方程,故A正確;

B、有兩個未知數,不是一元二次方程,故B錯誤;

C、是分式方程,不是一元二次方程,故C正確;

D、a=0時不是一元二次方程,故D錯誤;

故選:A.【點睛】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數且未知數的最高次數是1.二、填空題(每小題3分,共24分)11、【分析】已知拋物線的頂點式,寫出頂點坐標,用x、y代表頂點的橫坐標、縱坐標,消去a得出x、y的關系式.【詳解】解:二次函數中,頂點坐標為:,設頂點坐標為(x,y),∴①,②,由①2+②,得,∴;故答案為:.【點睛】本題考查了二次函數的性質,根據頂點式求頂點坐標的方法是解題的關鍵,注意運用消元的思想解題.12、【分析】首先過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,易得△OBD∽△AOC,又由點A在反比例函數的圖象上,點B在反比例函數的圖象上,即可得S△AOC=2,S△OBD=,然后根據相似三角形面積的比等于相似比的平方,即可得,然后由正切函數的定義求得答案.【詳解】解:過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,

∴∠ACO=∠ODB=90°,

∴∠OBD+∠BOD=90°,

∵∠AOB=90°,

∴∠BOD+∠AOC=90°,

∴∠OBD=∠AOC,

∴△OBD∽△AOC,∴,∵點A在反比例函數的圖象上,點B在反比例函數的圖象上,∴S△OBD=,S△AOC=2,∴,∴tan∠OAB=.故答案為:.【點睛】本題考查了相似三角形的判定與性質、反比例函數的性質以及直角三角形的性質.注意掌握數形結合思想的應用,注意掌握輔助線的作法.13、相交【分析】由圓的半徑為4,圓心O到直線l的距離為2,利用直線和圓的位置關系,圓的半徑大于直線到圓距離,則直線l與O的位置關系是相交.【詳解】解:∵⊙O的半徑為4,圓心O到直線L的距離為2,

∵4>2,即:d<r,

∴直線L與⊙O的位置關系是相交.

故答案為:相交.【點睛】本題考查知道知識點是圓與直線的位置關系,若d<r,則直線與圓相交;若d>r,則直線與圓相離;若d=r,則直線與圓相切.14、.【解析】∵將△ABC繞點A逆時針旋轉的到△ADE,點C和點E是對應點,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案為:.15、①②③【分析】①由四邊形ABCD是菱形,得出對角線平分對角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS證得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出①正確;②由DF⊥AB,F為邊AB的中點,證得AD=BD,證出△ABD為等邊三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB?cos∠BAC,AG,求出AC,AG,即可得出②正確;③由勾股定理求出DF,由GE=tan∠2?ED求出GE,即可得出③正確;④由S四邊形BFGC=S△ABC﹣S△AGF求出數值,即可得出④不正確.【詳解】∵四邊形ABCD是菱形,∴∠FAG=∠EAG,AB=AD,BC∥AD,∴∠1=∠GAD.∵∠1=∠2,∴∠GAD=∠2,∴AG=GD.∵GE⊥AD,∴GE垂直平分AD,∴AE=ED.∵F為邊AB的中點,∴AF=AE,在△AFG和△AEG中,∵,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴①正確;連接BD交AC于點O.∵DF⊥AB,F為邊AB的中點,∴AFAB=1,AD=BD.∵AB=AD,∴AD=BD=AB,∴△ABD為等邊三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AO=2AB?cos∠BAC=2×22,AG,∴CG=AC﹣AG=2,∴CG=2GA,∴②正確;∵GE垂直平分AD,∴EDAD=1,由勾股定理得:DF,GE=tan∠2?ED=tan30°×1,∴DF+GECG,∴③正確;∵∠BAC=∠1=30°,∴△ABC的邊AC上的高等于AB的一半,即為1,FGAG,S四邊形BFGC=S△ABC﹣S△AGF211,∴④不正確.故答案為:①②③.【點睛】本題考查了菱形的性質、全等三角形的判定與性質、勾股定理、三角函數、線段垂直平分線的性質、含30°角的直角三角形的性質等知識;本題綜合性強,有一定難度.16、(2,0),(2,0).【分析】根據等邊三角形的性質以及反比例函數圖象上點的坐標特征分別求出B2、B3、B4的坐標,得出規律,進而求出點Bn的坐標.【詳解】解:如圖,作A2C⊥x軸于點C,設B1C=a,則A2C=a,

OC=OB1+B1C=2+a,A2(2+a,a).

∵點A2在雙曲線上,

∴(2+a)?a=,

解得a=-1,或a=--1(舍去),

∴OB2=OB1+2B1C=2+2-2=2,

∴點B2的坐標為(2,0);

作A3D⊥x軸于點D,設B2D=b,則A3D=b,

OD=OB2+B2D=2+b,A2(2+b,b).

∵點A3在雙曲線y=(x>0)上,

∴(2+b)?b=,

解得b=-+,或b=--(舍去),

∴OB3=OB2+2B2D=2-2+2=2,

∴點B3的坐標為(2,0);

同理可得點B4的坐標為(2,0)即(4,0);

以此類推…,

∴點Bn的坐標為(2,0),

故答案為(2,0),(2,0).【點睛】本題考查了反比例函數圖象上點的坐標特征,等邊三角形的性質,正確求出B2、B3、B4的坐標進而得出點Bn的規律是解題的關鍵.17、60°或120°【分析】如下圖所示,分兩種情況考慮:D點在優弧CDB上或E點在劣弧BC上時,根據三角函數可求出∠OCF的大小,進而求出∠BOC的大小,再由圓周角定理可求出∠D、∠E大小,進而得到弦BC所對的圓周角.【詳解】解:分兩種情況考慮:D在優弧CDB上或E在劣弧BC上時,可得弦BC所對的圓周角為∠D或∠E,如下圖所示,作OF⊥BC,由垂徑定理可知,F為BC的中點,∴CF=BF=BC=,又直徑為4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=∠COB=60°,又圓內接四邊形的對角互補,∴∠E=120°,則弦BC所對的圓周角為60°或120°.故答案為:60°或120°.【點睛】此題考查了圓周角定理,圓內接四邊形的性質,銳角三角函數定義,以及特殊角的三角函數值,熟練掌握圓周角定理是解本題的關鍵.18、1【分析】設兩個正六邊形的中心為O,連接OP,OB,過點O作OG⊥PM于點G,OH⊥AB于點H,如圖所示:很容易證出三角形PMN是一個等邊三角形,邊長PM的長,,而且面積等于小正六邊形的面積的,故三角形PMN的面積很容易被求出,根據正六邊形的性質及等腰三角形的三線和一可以得出PG的長,進而得出OG的長,,在Rt△OPG中,根據勾股定理得OP的長,設OB為x,,根據正六邊形的性質及等腰三角形的三線和一可以得出BH,OH的長,進而得出PH的長,在Rt△PHO中,根據勾股定理得關于x的方程,求解得出x的值,從而得出答案.【詳解】解:設兩個正六邊形的中心為O,連接OP,OB,過點O作OG⊥PM于點G,OH⊥AB于點H,如圖所示:很容易證出三角形PMN是一個等邊三角形,邊長PM=,而且面積等于小正六邊形的面積的,故三角形PMN的面積為cm2,∵OG⊥PM,且O是正六邊形的中心,∴PG=PM=∴OG=在Rt△OPG中,根據勾股定理得:OP2=OG2+PG2,即=OP2∴OP=7cm,設OB為x,∵OH⊥AB,且O是正六邊形的中心,∴BH=X,OH=,∴PH=5-x,在Rt△PHO中,根據勾股定理得OP2=PH2+OH2,即解得:x1=1,x2=-3(舍)故該圓的半徑為1cm.故答案為1.【點睛】本題以相機快門為背景,從中抽象出數學模型,綜合考查了多邊形、圓、三角形及解三角形等相關知識,突出考查數學的應用意識和解決問題的能力.試題通過將快門的光圈變化這個動態的實際問題化為靜態的數學問題,讓每個學生都能參與到實際問題數學化的過程中,鼓勵學生用數學的眼光觀察世界;在運用數學知識解決問題的過程中,關注思想方法,側重對問題的分析,將復雜的圖形轉化為三角形或四邊形解決,引導學生用數學的語言表達世界,用數學的思維解決問題.三、解答題(共66分)19、(1)見解析;(2)見解析;(1)存在,請確定C點的位置見解析,MN=1.【分析】(1)根據題意證明△DCB≌△ACE即可得出結論;(2)由題中條件可得△ACE≌△DCB,進而得出△ACM≌△DCN,即CM=CN,△MCN是等邊三角形,即可得出結論;(1)可先假設其存在,設AC=x,MN=y,進而由平行線分線段成比例即可得出結論.【詳解】解:(1)∵△ACD與△BCE是等邊三角形,∴AC=CD,CE=BC,

∴∠ACE=∠BCD,

在△ACE與△DCB中,,∴△ACE≌△DCB(SAS),∴DB=AE;(2)∵△ACE≌△DCB,∴∠CAE=∠BDC,

在△ACM與△DCN中,,∴△ACM≌△DCN,

∴CM=CN,

又∵∠MCN=180°-60°-60°=60°,

∴△MCN是等邊三角形,

∴∠MNC=∠NCB=60°

即MN∥AB;(1)解:假設符合條件的點C存在,設AC=x,MN=y,

∵MN∥AB,∴,即,,當x=6時,ymax=1cm,即點C在點A右側6cm處,且MN=1.【點睛】本題主要考查了全等三角形的判定及性質以及平行線分線段成比例的性質和二次函數問題,能夠將所學知識聯系起來,從而熟練求解.20、24.8米.【分析】首先判定△DOE∽△BOA,根據相似三角形的性質可得,再代入DE=37.2米計算即可.【詳解】∵,∠DOE=∠BOA,∴△DOE∽△BOA,∴,∴,∴AB=24.8(米).答:A、B之間的距離為24.8米.【點睛】本題考查了相似三角形的應用,關鍵是掌握相似三角形的對應邊的比相等.21、(1)y=﹣;(2)M(5,﹣)或(﹣1,8).【解析】(1)由Q(2,0),推出P(2,-4),利用待定系數法即可解決問題;

(2)根據三角形的面積公式求出MN的長,分兩種情形求出點M的坐標即可.【詳解】(1)把x=2代入y=﹣2x得y=﹣4∴P(2,﹣4),設反比例函數解析式y=(k≠0),∵P在此圖象上∴k=2×(﹣4)=﹣8,∴y=﹣;(2)∵P(2,﹣4),Q(2,0)∴PQ=4,過M作MN⊥PQ于N.則?PQ?MN=6,∴MN=3,設M(x,﹣),則x=2+3=5或x=2﹣3=﹣1當x=5時,﹣=﹣,當x=﹣1時,﹣=1,∴M(5,﹣)或(﹣1,8).故答案為:(1)y=﹣;(2)M(5,﹣)或(﹣1,8).【點睛】本題考查反比例函數與一次函數的交點問題,解題的關鍵是用待定系數法求反比例函數的解析式,利用數形結合的思想表示出三角形的面積也是解答本題的關鍵.22、定價為57.5元時,所獲利潤最大,最大利潤為6125元.【分析】設所獲利潤為元,每件降價元,先求出降價后的每件利潤和銷量,再根據“利潤=每件利潤銷量”列出等式,然后根據二次函數的性質求解即可.【詳解】設所獲利潤為元,每件降價元則降價后的每件利潤為元,每星期銷量為件由利潤公式得:整理得:由二次函數的性質可知,當時,y隨x的增大而增大;當時,y隨x的增大而減小故當時,y取得最大值,最大值為6125元即定價為:元時,所獲利潤最大,最大利潤為6125元.【點睛】本題考查了二次函數的應用,依據題意正確得出函數的關系式是解題關鍵.23、(1)交點坐標為(2,0)和(1,0);(2)2<x<1【分析】(1)把點(﹣2,﹣40)和點(6,1)代入二次函數解析式得到關于a和b的方程組,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論