黑龍江省大慶市一中2025屆高一下數學期末檢測試題含解析_第1頁
黑龍江省大慶市一中2025屆高一下數學期末檢測試題含解析_第2頁
黑龍江省大慶市一中2025屆高一下數學期末檢測試題含解析_第3頁
黑龍江省大慶市一中2025屆高一下數學期末檢測試題含解析_第4頁
黑龍江省大慶市一中2025屆高一下數學期末檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省大慶市一中2025屆高一下數學期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.以為圓心,且與兩條直線,都相切的圓的標準方程為()A. B.C. D.2.直線的斜率是()A. B.13 C.0 D.3.已知甲、乙兩組數據用莖葉圖表示如圖所示,若它們的中位數相同,平均數也相同,則圖中的的比值等于A. B. C. D.4.已知,,則()A. B. C. D.5.若、為異面直線,直線,則與的位置關系是()A.相交 B.異面 C.平行 D.異面或相交6.在中,,則是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形7.在區間上隨機取一個數,使得的概率為()A. B. C. D.8.若變量,且滿足約束條件,則的最大值為()A.15 B.12 C.3 D.9.等比數列中,,則等于()A.16 B.±4 C.-4 D.410.設的內角A,B,C所對的邊分別為a,b,c.若,,則角()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若角的終邊過點,則______.12.把正整數排列成如圖甲所示的三角形數陣,然后擦去偶數行中的奇數和奇數行中的偶數,得到如圖乙所示的三角形數陣,再把圖乙中的數按從小到大的順序排成一列,得到一個數列,若,則________________.13.從原點向直線作垂線,垂足為點,則的方程為_______.14.已知數列,,且,則________.15.已知,則____________.16.若是方程的解,其中,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在正方體,中,,,,,分別是棱,,,,的中點.(1)求證:平面平面;(2)求平面將正方體分成的兩部分體積之比.18.有一款手機,每部購買費用是5000元,每年網絡費和電話費共需1000元;每部手機第一年不需維修,第二年維修費用為100元,以后每一年的維修費用均比上一年增加100元.設該款手機每部使用年共需維修費用元,總費用元.(總費用購買費用網絡費和電話費維修費用)(1)求函數、的表達式:(2)這款手機每部使用多少年時,它的年平均費用最少?19.等差數列的首項為23,公差為整數,且第6項為正數,從第7項起為負數.求此數列的公差及前項和.20.從甲、乙、丙、丁四個人中選兩名代表,求:(1)甲被選中的概率;(2)丁沒被選中的概率.21.已知兩點,.(1)求直線AB的方程;(2)直線l經過,且傾斜角為,求直線l與AB的交點坐標.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

由題意有,再求解即可.【詳解】解:設圓的半徑為,則,則,即圓的標準方程為,故選:C.【點睛】本題考查了點到直線的距離公式,重點考查了運算能力,屬基礎題.2、A【解析】

由題得即得直線的斜率得解.【詳解】由題得,所以直線的斜率為.故選:A【點睛】本題主要考查直線的斜率的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.3、A【解析】

從莖葉圖提取甲、乙兩組數據中的原始數據,并按從小到大排列,分別得到中位數,并計算各自的平均數,再根據中位數、平均值相等得到關于的方程.【詳解】甲組數據:,中位數為,乙組數據:,中位數為:,所以,所以,故選A.【點睛】本題考查中位數、平均數的概念與計算,對甲組數據排序時,一定是最大,乙組數據中一定是最小.4、C【解析】

由放縮法可得出,再利用特殊值法以及不等式的基本性質可判斷各選項中不等式的正誤.【詳解】,,可得.取,,,則A、D選項中的不等式不成立;取,,,則B選項中的不等式不成立;且,由不等式的基本性質得,C選項中的不等式成立.故選:C.【點睛】本題考查不等式正誤的判斷,一般利用不等式的性質或特殊值法進行判斷,考查推理能力,屬于中等題.5、D【解析】解:因為為異面直線,直線,則與的位置關系是異面或相交,選D6、D【解析】

先由可得,然后利用與三角函數的和差公式可推出,從而得到是直角三角形【詳解】因為,所以所以因為所以即所以所以因為,所以因為,所以,即是直角三角形故選:D【點睛】要判斷三角形的形狀,應圍繞三角形的邊角關系進行思考,主要有以下兩條途徑:①角化邊:把已知條件轉化為只含邊的關系,通過因式分解、配方等得到邊的對應關系,從而判斷三角形形狀,②邊化角:把已知條件轉化為內角的三角函數間的關系,通過三角恒等變換,得出內角的關系,從而判斷三角形的形狀.7、A【解析】則,故概率為.8、A【解析】

作出可行域,采用平移直線法判斷何處取到最大值.【詳解】畫出可行域如圖陰影部分,由得,目標函數圖象可看作一條動直線,由圖形可得當動直線過點時,.故選A.【點睛】本題考查線性規劃中線性目標函數最值的計算,難度較易.求解線性目標函數的最值時,采用平移直線法是最常規的.9、D【解析】分析:利用等比中項求解.詳解:,因為為正,解得.點睛:等比數列的性質:若,則.10、B【解析】

根據正弦定理,可得,進而可求,再利用余弦定理,即可得結果.【詳解】,∴由正弦定理,可得3b=5a,,,,,故選:B.【點睛】本題主要考查余弦定理及正弦定理的應用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2).二、填空題:本大題共6小題,每小題5分,共30分。11、-2【解析】

由正切函數定義計算.【詳解】根據正切函數定義:.故答案為-2.【點睛】本題考查三角函數的定義,掌握三角函數定義是解題基礎.12、【解析】

由圖乙可得:第行有個數,且第行最后的一個數為,從第三行開始每一行的數從左到右都是公差為的等差數列,注意到,,據此確定n的值即可.【詳解】分析圖乙,可得①第行有個數,則前行共有個數,②第行最后的一個數為,③從第三行開始每一行的數從左到右都是公差為的等差數列,又由,,則,則出現在第行,第行第一個數為,這行中第個數為,前行共有個數,則為第個數.故填.【點睛】歸納推理是由部分到整體、由特殊到一般的推理,由歸納推理所得的結論不一定正確,通常歸納的個體數目越多,越具有代表性,那么推廣的一般性命題也會越可靠,它是一種發現一般性規律的重要方法.13、.【解析】

先求得直線的斜率,由直線垂直時的斜率關系可求得直線的斜率.再根據點斜式即可求得直線的方程.【詳解】從原點向直線作垂線,垂足為點則直線的斜率由兩條垂直直線的斜率關系可知根據點斜式可得直線的方程為化簡得故答案為:【點睛】本題考查了直線垂直時的斜率關系,點斜式方程的應用,屬于基礎題.14、【解析】

由題意可得{}是以+1為首項,以2為公比的等比數列,再由已知求得首項,進一步求得即可.【詳解】在數列中,滿足得,則數列是以+1為首項,以公比為2的等比數列,得,由,則,得.由,得,故.故答案為:【點睛】本題考查了數列的遞推式,利用構造等比數列方法求數列的通項公式,屬于中檔題.15、【解析】

由已知結合同角三角函數基本關系式可得,然后分子分母同時除以求解.【詳解】,.故答案為:.【點睛】本題考查三角函數的化簡求值,考查同角三角函數基本關系式的應用,是基礎的計算題.16、或【解析】

將代入方程,化簡結合余弦函數的性質即可求解.【詳解】由題意可得:,即所以或又所以或故答案為:或【點睛】本題主要考查了三角函數求值問題,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)先證明平面,再證明平面平面;(2)連接,,則截面右側的幾何體為四棱錐和三棱錐,再求出每一部分的體積得解.【詳解】(1)證明:在正方體中,連接.因為,分別是,的中點,所以.因為平面,平面,所以.因為,所以平面,平面,所以,同理,因為,所以平面,因為平面,所以平面平面;(2)連接,,則截面右側的幾何體為四棱錐和三棱錐,設正方體棱長為1,所以,所以平面將正方體分成的兩部分體積之比為.【點睛】本題主要考查面面垂直關系的證明和幾何體體積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.18、(1),;(2)這款手機使用年時它的年平均費用最少【解析】

(1)第年的維修費用為,根據等差數列求和公式可求得;將加上購買費用和年的網絡費和電話費總額即可得到;(2)平均費用,利用基本不等式可求得最小值,根據取等條件可求得的取值.【詳解】(1)則(2)設每部手機使用年的平均費用為則當,即時,這款手機使用年時它的年平均費用最少【點睛】本題考查構造合適的函數模型解決實際問題,涉及到函數最值的求解問題;解決本題中最值問題的關鍵是能夠得到符合基本不等式的形式,利用基本不等式求得和的最小值.19、,【解析】

先設等差數列的公差為,根據第6項為正數,從第7項起為負數,得到求,再利用等差數列前項和公式求其.【詳解】設等差數列的公差為,因為第6項為正數,從第7項起為負數,所以,即,所以又因為所以所以【點睛】本題主要考查了等差數列的通項公式和前n項和公式,還考查了運算求解的能力,屬于中檔題.20、(1);(2).【解析】

(1)先確定從甲、乙、丙、丁四個人中選兩名代表總事件數,再確定甲被選中的事件數,最后根據古典概型概率公式求概率(2)先確定從甲、乙、丙、丁四個人中選兩名代表總事件數,再確定丁沒被選中的事件數,最后根據古典概型概率公式求概率.【詳解】(1)從甲、乙、丙、丁四個人中選兩名代表共有:甲乙,甲丙,甲丁,乙丙,乙丁、丙丁共6種基本事件,其中甲被選中包括甲乙,甲丙,甲丁三種基本事件,所以甲被選中的概率為.(2)丁沒被選中包括甲乙,甲丙,乙丙三種基本事件,所以丁沒被選中的概率為.點睛:古典概型中基本事件數的探求方法(1)列舉法.(2)樹狀圖法:適合于較為復雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復雜的題目簡單化、抽象的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論