




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省漢陽一中2024屆高三第五次模擬考試數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數列的公差為,前項和為,,,為某三角形的三邊長,且該三角形有一個內角為,若對任意的恒成立,則實數().A.6 B.5 C.4 D.32.已知復數滿足(是虛數單位),則=()A. B. C. D.3.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.4.已知平面向量,滿足且,若對每一個確定的向量,記的最小值為,則當變化時,的最大值為()A. B. C. D.15.陀螺是中國民間較早的娛樂工具之一,但陀螺這個名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書中才正式出現.如圖所示的網格紙中小正方形的邊長均為1,粗線畫出的是一個陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.6.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.()A. B. C. D.8.已知向量,,若,則()A. B. C.-8 D.89.在等差數列中,,,若(),則數列的最大值是()A. B.C.1 D.310.已知三棱錐且平面,其外接球體積為()A. B. C. D.11.已知圓關于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.12.函數的部分圖像大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.為激發學生團結協作,敢于拼搏,不言放棄的精神,某校高三5個班進行班級間的拔河比賽.每兩班之間只比賽1場,目前(—)班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場.則目前(五)班已經參加比賽的場次為__________.14.在直三棱柱內有一個與其各面都相切的球O1,同時在三棱柱外有一個外接球.若,,,則球的表面積為______.15.已知點是直線上的一點,將直線繞點逆時針方向旋轉角,所得直線方程是,若將它繼續旋轉角,所得直線方程是,則直線的方程是______.16.已知函數在上僅有2個零點,設,則在區間上的取值范圍為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)求函數在處的切線方程(2)設函數,對于任意,恒成立,求的取值范圍.18.(12分)如圖,已知橢圓的右焦點為,,為橢圓上的兩個動點,周長的最大值為8.(Ⅰ)求橢圓的標準方程;(Ⅱ)直線經過,交橢圓于點,,直線與直線的傾斜角互補,且交橢圓于點,,,求證:直線與直線的交點在定直線上.19.(12分)已知矩形中,,E,F分別為,的中點.沿將矩形折起,使,如圖所示.設P、Q分別為線段,的中點,連接.(1)求證:平面;(2)求二面角的余弦值.20.(12分)已知數列,其前項和為,滿足,,其中,,,.⑴若,,(),求證:數列是等比數列;⑵若數列是等比數列,求,的值;⑶若,且,求證:數列是等差數列.21.(12分)已知函數.(1)若不等式有解,求實數的取值范圍;(2)函數的最小值為,若正實數,,滿足,證明:.22.(10分)設數陣,其中、、、.設,其中,且.定義變換為“對于數陣的每一行,若其中有或,則將這一行中每個數都乘以;若其中沒有且沒有,則這一行中所有數均保持不變”(、、、).表示“將經過變換得到,再將經過變換得到、,以此類推,最后將經過變換得到”,記數陣中四個數的和為.(1)若,寫出經過變換后得到的數陣;(2)若,,求的值;(3)對任意確定的一個數陣,證明:的所有可能取值的和不超過.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時的n即可.【詳解】由已知,,又三角形有一個內角為,所以,,解得或(舍),故,當時,取得最大值,所以.故選:C.【點睛】本題考查等差數列前n項和的最值問題,考查學生的計算能力,是一道基礎題.2、A【解析】
把已知等式變形,再由復數代數形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.【點睛】本題考查復數代數形式的乘除運算,考查復數的基本概念,是基礎題.3、D【解析】
根據三視圖知,該幾何體是一條垂直于底面的側棱為2的四棱錐,畫出圖形,結合圖形求出底面積代入體積公式求它的體積.【詳解】根據三視圖知,該幾何體是側棱底面的四棱錐,如圖所示:結合圖中數據知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點睛】本題考查由三視圖求幾何體體積,由三視圖正確復原幾何體是解題的關鍵,考查空間想象能力.屬于中等題.4、B【解析】
根據題意,建立平面直角坐標系.令.為中點.由即可求得點的軌跡方程.將變形,結合及平面向量基本定理可知三點共線.由圓切線的性質可知的最小值即為到直線的距離最小值,且當與圓相切時,有最大值.利用圓的切線性質及點到直線距離公式即可求得直線方程,進而求得原點到直線的距離,即為的最大值.【詳解】根據題意,設,則由代入可得即點的軌跡方程為又因為,變形可得,即,且所以由平面向量基本定理可知三點共線,如下圖所示:所以的最小值即為到直線的距離最小值根據圓的切線性質可知,當與圓相切時,有最大值設切線的方程為,化簡可得由切線性質及點到直線距離公式可得,化簡可得即所以切線方程為或所以當變化時,到直線的最大值為即的最大值為故選:B【點睛】本題考查了平面向量的坐標應用,平面向量基本定理的應用,圓的軌跡方程問題,圓的切線性質及點到直線距離公式的應用,綜合性強,屬于難題.5、C【解析】
根據三視圖可知,該幾何體是由兩個圓錐和一個圓柱構成,由此計算出陀螺的表面積.【詳解】最上面圓錐的母線長為,底面周長為,側面積為,下面圓錐的母線長為,底面周長為,側面積為,沒被擋住的部分面積為,中間圓柱的側面積為.故表面積為,故選C.【點睛】本小題主要考查中國古代數學文化,考查三視圖還原為原圖,考查幾何體表面積的計算,屬于基礎題.6、D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數在解三角形中的具體應用,屬于基礎題7、D【解析】
利用,根據誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導公式以及兩角差的正弦公式,關鍵在于掌握公式,屬基礎題.8、B【解析】
先求出向量,的坐標,然后由可求出參數的值.【詳解】由向量,,則,,又,則,解得.故選:B【點睛】本題考查向量的坐標運算和模長的運算,屬于基礎題.9、D【解析】
在等差數列中,利用已知可求得通項公式,進而,借助函數的的單調性可知,當時,取最大即可求得結果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數,在時,單調遞減,且;在時,單調遞減,且.所以數列的最大值是,且,所以數列的最大值是3.故選:D.【點睛】本題考查等差數列的通項公式,考查數列與函數的關系,借助函數單調性研究數列最值問題,難度較易.10、A【解析】
由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【詳解】由題,因為,所以,設,則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設外接球的半徑為,則,所以,所以外接球的體積.故選:A【點睛】本題考查三棱錐的外接球體積,考查空間想象能力.11、C【解析】
將圓,化為標準方程為,求得圓心為.根據圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據求解.【詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【點睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質,還考查了運算求解的能力,屬于中檔題.12、A【解析】
根據函數解析式,可知的定義域為,通過定義法判斷函數的奇偶性,得出,則為偶函數,可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數,圖象關于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數解析式識別函數圖象,利用函數的奇偶性和特殊值法進行排除.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
根據比賽場次,分析,畫出圖象,計算結果.【詳解】畫圖所示,可知目前(五)班已經賽了2場.故答案為:2【點睛】本題考查推理,計數原理的圖形表示,意在考查數形結合分析問題的能力,屬于基礎題型.14、【解析】
先求出球O1的半徑,再求出球的半徑,即得球的表面積.【詳解】解:,,,,設球O1的半徑為,由題得,所以棱柱的側棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【點睛】本題主要考查幾何體的內切球和外接球問題,考查球的表面積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.15、【解析】
求出點坐標,由于直線與直線垂直,得出直線的斜率為,再由點斜式寫出直線的方程.【詳解】由于直線可看成直線先繞點逆時針方向旋轉角,再繼續旋轉角得到,則直線與直線垂直,即直線的斜率為所以直線的方程為,即故答案為:【點睛】本題主要考查了求直線的方程,涉及了求直線的交點以及直線與直線的位置關系,屬于中檔題.16、【解析】
先根據零點個數求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因為在上有兩個零點,所以,所以,所以且,所以,所以,所以,令,所以,所以,因為,所以,所以,所以,所以,,所以.故答案為:.【點睛】本題考查三角函數圖象與性質的綜合,其中涉及到換元法求解三角函數值域的問題,難度較難.對形如的函數的值域求解,關鍵是采用換元法令,然后根據,將問題轉化為關于的函數的值域,同時要注意新元的范圍.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)求出,即可求出切線的點斜式方程,整理即可;(2)的取值范圍滿足,,求出,當時求出,的解,得到單調區間,極小值最小值即可.【詳解】(1)由于,此時切點坐標為所以切線方程為.(2)由已知,故.由于,故,設由于在單調遞增同時時,,時,,故存在使得且當時,當時,所以當時,當時,所以當時,取得極小值,也是最小值,故由于,所以,.【點睛】本題考查導數的幾何意義、不等式恒成立問題,應用導數求最值是解題的關鍵,考查邏輯推理、數學計算能力,屬于中檔題.18、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)由橢圓的定義可得,周長取最大值時,線段過點,可求出,從而求出橢圓的標準方程;(Ⅱ)設直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達定理和弦長公式求出和,根據求出的值.最后直線與直線的方程聯立,求兩直線的交點即得結論.【詳解】(Ⅰ)設的周長為,則,當且僅當線段過點時“”成立.,,又,,橢圓的標準方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點矛盾,所以直線的斜率存在.設,,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時.直線,聯立直線與直線的方程得,即點在定直線.【點睛】本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查學生的邏輯推理能力和運算能力,屬于難題.19、(1)證明見解析(2)【解析】
(1)取中點R,連接,,可知中,且,由Q是中點,可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標系,求得半平面的法向量:,然后利用空間向量的相關結論可求得二面角的余弦值.【詳解】(1)取中點R,連接,,則在中,,且,又Q是中點,所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內作交于點G,以E為原點,,,分別為x,y,x軸,建立如圖所示的空間直角坐標系,則各點坐標為,,,所以,,設平面的一個法向量為,則即,取,得,又平面的一個法向量為,所以.因此,二面角的余弦值為【點睛】本題考查線面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運算求解能力,難度一般.20、(1)見解析(2)(3)見解析【解析】試題分析:(1)(),所以,故數列是等比數列;(2)利用特殊值法,得,故;(3)得,所以,得,可證數列是等差數列.試題解析:(1)證明:若,則當(),所以,即,所以,又由,,得,,即,所以,故數列是等比數列.(2)若是等比數列,設其公比為(),當時,,即,得,①當時,,即,得,②當時,,即,得,③②①,得,③②,得,解得.代入①式,得.此時(),所以,是公比為1的等比數列,故.(3)證明:若,由,得,又,解得.由,,,,代入得,所以,,成等差數列,由,得,兩式相減得:即所以相減得:所以所以,因為,所以,即數列是等差數列.21、(1)(2)見解析【解析】
(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 3588-2019水稻-中華鱉共作技術規程
- DB32/T 1580-2019地理標志產品射陽大米
- DB32/ 4385-2022鍋爐大氣污染物排放標準
- DB31/T 606-2012立桿掛旗廣告設置技術規范
- DB31/T 583-2012社區公益服務項目績效評估導則
- DB31/ 897-2015預拌砂漿單位產品綜合能源消耗限額
- 2025電纜采購合同格式范本
- 谷物磨制在糧食加工產業促進農產品加工副產物利用的研究考核試卷
- 玩具企業的品牌傳播與公關策略考核試卷
- 深海油氣鉆探設備故障樹分析考核試卷
- 成都設計咨詢集團有限公司2025年社會公開招聘(19人)筆試參考題庫附帶答案詳解
- 2024年江西省高考化學試卷(真題+答案)
- 建筑史智慧樹知到期末考試答案2024年
- 基于MATLAB仿真的烤箱的溫度控制分析
- 餐廳食堂就餐券通用模板
- 煤礦安全安全設施設計
- 高中語文-戲劇單元重要知識點整理
- 門式腳手架移動作業平臺施工方案
- JJF 1934-2021 超聲波風向風速測量儀器校準規范
- 2021年寧夏中考地理試題及答案
- 《蘇幕遮燎沉香》教學設計
評論
0/150
提交評論