重慶市康德卷2024屆高一下數學期末學業水平測試模擬試題含解析_第1頁
重慶市康德卷2024屆高一下數學期末學業水平測試模擬試題含解析_第2頁
重慶市康德卷2024屆高一下數學期末學業水平測試模擬試題含解析_第3頁
重慶市康德卷2024屆高一下數學期末學業水平測試模擬試題含解析_第4頁
重慶市康德卷2024屆高一下數學期末學業水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市康德卷2024屆高一下數學期末學業水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.從2名男同學和3名女同學中任選2人參加社區服務,則選中的2人都是女同學的概率為A. B. C. D.2.已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1,l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為A.16 B.14 C.12 D.103.已知、是平面上兩個不共線的向量,則下列關系式:①;②;③;④.正確的個數是()A.4 B.3 C.2 D.14.經過平面外一點和平面內一點與平面垂直的平面有()A.1個 B.2個 C.無數個 D.1個或無數個5.角的終邊經過點且,則的值為()A.-3 B.3 C.±3 D.56.在空間四邊形中,分別是的中點.若,且與所成的角為,則四邊形的面積為()A. B. C. D.7.下列函數中是偶函數且最小正周期為的是()A. B.C. D.8.已知,則()A. B. C. D.9.函數的部分圖象如圖,則()()A.0 B. C. D.610.已知是銳角,那么2是()A.第一象限 B.第二象限C.小于的正角 D.第一象限或第二象限二、填空題:本大題共6小題,每小題5分,共30分。11.角的終邊經過點,則___________________.12.已知滿足約束條件,則的最大值為__________.13.函數的圖像可由函數的圖像至少向右平移________個單位長度得到.14.點與點關于直線對稱,則直線的方程為______.15.向量.若向量,則實數的值是________.16.如圖,在正方體中,有以下結論:①平面;②平面;③;④異面直線與所成的角為.則其中正確結論的序號是____(寫出所有正確結論的序號).三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知:(,為常數).(1)若,求的最小正周期;(2)若在,上最大值與最小值之和為3,求的值.18.如圖,在平面直角坐標系中,點,,銳角的終邊與單位圓O交于點P.(Ⅰ)當時,求的值;(Ⅱ)在軸上是否存在定點M,使得恒成立?若存在,求出點M坐標;若不存在,說明理由.19.已知角終邊上一點,且,求的值.20.如圖,已知函數,點分別是的圖像與軸、軸的交點,分別是的圖像上橫坐標為的兩點,軸,共線.(1)求的值;(2)若關于的方程在區間上恰有唯一實根,求實數的取值范圍.21.在△ABC中,a,b,c分別是角A,B,C的對邊,已知3(b2+c2)=3a2+2bc.(1)若sinB=cosC,求tanC的大小;(2)若a=2,△ABC的面積S=,且b>c,求b,c.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】分析:分別求出事件“2名男同學和3名女同學中任選2人參加社區服務”的總可能及事件“選中的2人都是女同學”的總可能,代入概率公式可求得概率.詳解:設2名男同學為,3名女同學為,從以上5名同學中任選2人總共有共10種可能,選中的2人都是女同學的情況共有共三種可能則選中的2人都是女同學的概率為,故選D.點睛:應用古典概型求某事件的步驟:第一步,判斷本試驗的結果是否為等可能事件,設出事件;第二步,分別求出基本事件的總數與所求事件中所包含的基本事件個數;第三步,利用公式求出事件的概率.2、A【解析】設,直線的方程為,聯立方程,得,∴,同理直線與拋物線的交點滿足,由拋物線定義可知,當且僅當(或)時,取等號.點睛:對于拋物線弦長問題,要重點抓住拋物線定義,到定點的距離要想到轉化到準線上,另外,直線與拋物線聯立,求判別式,利用根與系數的關系是通法,需要重點掌握.考查最值問題時要能想到用函數方法和基本不等式進行解決.此題還可以利用弦長的傾斜角表示,設直線的傾斜角為,則,則,所以.3、C【解析】

根據數量積的運算性質對選項進行逐一判斷,即可得到答案.【詳解】①.,滿足交換律,正確.②.,滿足分配律,正確.③.,所以不正確.④.,

,可正可負可為0,所以④不正確.故選:C【點睛】本題考查向量數量積的運算性質,屬于中檔題4、D【解析】

討論平面外一點和平面內一點連線,與平面垂直和不垂直兩種情況.【詳解】(1)設平面為平面,點為平面外一點,點為平面內一點,此時,直線垂直底面,過直線的平面有無數多個與底面垂直;(2)設平面為平面,點為平面外一點,點為平面內一點,此時,直線與底面不垂直,過直線的平面,只有平面垂直底面.綜上,過平面外一點和平面內一點與平面垂直的平面有1個或無數個,故選D.【點睛】借助長方體研究空間中線、面位置關系問題,能使問題直觀化,降低問題的抽象性.5、B【解析】

根據三角函數的定義建立方程關系即可.【詳解】因為角的終邊經過點且,所以則解得【點睛】本題主要考查三角函數的定義的應用,應注意求出的b為正值.6、A【解析】

連接EH,因為EH是△ABD的中位線,所以EH∥BD,且EH=BD.同理,FG∥BD,且FG=BD,所以EH∥FG,且EH=FG.所以四邊形EFGH為平行四邊形.因為AC=BD=a,AC與BD所成的角為60°所以EF=EH.所以四邊形EFGH為菱形,∠EFG=60°.∴四邊形EFGH的面積是2××()2=a2故答案為a2,故選A.考點:本題主要是考查的知識點簡單幾何體和公理四,公理四:和同一條直線平行的直線平行,證明菱形常用方法是先證明它是平行四邊形再證明鄰邊相等,以及面積公式屬于基礎題.點評:解決該試題的關鍵是先證明四邊形EFGH為菱形,然后說明∠EFG=60°,最后根據三角形的面積公式即可求出所求.7、A【解析】

本題首先可將四個選項都轉化為的形式,然后對四個選項的奇偶性以及周期性依次進行判斷,即可得出結果.【詳解】中,函數,是偶函數,周期為;中,函數是奇函數,周期;中,函數,是非奇非偶函數,周期;中,函數是偶函數,周期.綜上所述,故選A.【點睛】本題考查對三角函數的奇偶性以及周期性的判斷,考查三角恒等變換,偶函數滿足,對于函數,其最小正周期為,考查化歸與轉化思想,是中檔題.8、A【解析】分析:利用余弦的二倍角公式可得,進而利用同角三角基本關系,使其除以,轉化成正切,然后把的值代入即可.詳解:由題意得.∵∴故選A.點睛:本題主要考查了同角三角函數的基本關系和二倍角的余弦函數的公式.解題的關鍵是利用同角三角函數中的平方關系,完成了弦切的互化.9、D【解析】

先利用正切函數求出A,B兩點的坐標,進而求出與的坐標,再代入平面向量數量積的運算公式即可求解.【詳解】因為y=tan(x)=0?xkπ?x=4k+2,由圖得x=2;故A(2,0)由y=tan(x)=1?xk?x=4k+3,由圖得x=3,故B(3,1)所以(5,1),(1,1).∴()5×1+1×1=1.故選D.【點睛】本題主要考查平面向量數量積的坐標運算,考查了利用正切函數值求角的運算,解決本題的關鍵在于求出A,B兩點的坐標,屬于基礎題.10、C【解析】是銳角,∴,∴是小于的正角二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先求出到原點的距離,再利用正弦函數定義求解.【詳解】因為,所以到原點距離,故.故答案為:.【點睛】設始邊為的非負半軸,終邊經過任意一點,則:12、57【解析】

作出不等式組所表示的可行域,平移直線,觀察直線在軸的截距取最大值時的最優解,再將最優解代入目標函數可得出目標函數的最大值.【詳解】作出不等式組所表示的可行域如下圖所示:平移直線,當直線經過可行域的頂點時,該直線在軸上的截距取最大值,此時,取最大值,即,故答案為.【點睛】本題考查簡單的線性規劃問題,考查線性目標函數的最值問題,一般利用平移直線結合在坐標軸上的截距取最值時,找最優解求解,考查數形結合數學思想,屬于中等題.13、【解析】試題分析:因為,所以函數的的圖像可由函數的圖像至少向右平移個單位長度得到.【考點】三角函數圖像的平移變換、兩角差的正弦公式【誤區警示】在進行三角函數圖像變換時,提倡“先平移,后伸縮”,但“先伸縮,后平移”也經常出現在題目中,所以也必須熟練掌握,無論是哪種變形,切記每一個變換總是對字母而言,即圖像變換要看“變量”變化多少,而不是“角”變化多少.14、【解析】

根據和關于直線對稱可得直線和直線垂直且中點在直線上,從而可求得直線的斜率,利用點斜式可得直線方程.【詳解】由,得:且中點坐標為和關于直線對稱且在上的方程為:,即:本題正確結果:【點睛】本題考查根據兩點關于直線對稱求解直線方程的問題,關鍵是明確兩點關于直線對稱則連線與對稱軸垂直,且中點必在對稱軸上,屬于常考題型.15、-3【解析】

試題分析:∵,∴,又∵,∴,∴,∴考點:本題考查了向量的坐標運算點評:熟練運用向量的坐標運算是解決此類問題的關鍵,屬基礎題16、①③【解析】

①:利用線面平行的判定定理可以直接判斷是正確的結論;②:舉反例可以判斷出該結論是錯誤的;③:可以利用線面垂直的判定定理,得到線面垂直,再利用線面垂直的性質定理可以判斷是正確的結論;④:可以通過,可以判斷出異面直線與所成的角為,即本結論是錯誤的,最后選出正確的結論序號.【詳解】①:平面,平面平面,故本結論是正確的;②:在正方形中,,顯然不垂直,而,所以不互相垂直,要是平面,則必有互相垂直,顯然是不可能的,故本結論是錯誤的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本結論是正確的;④:因為,所以異面直線與所成的角為,在正方形中,,故本結論是錯誤的,因此正確結論的序號是①③.【點睛】本題考查了線面平行的判定定理、線面垂直的判定定理、性質定理,考查了異面直線所成的角、線面垂直的性質.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)1【解析】

(1)利用二倍角和輔助角公式化簡,即可求出最小正周期;(2)根據在,上,求解內層函數范圍,即可求解最值,由最大值與最小值之和為3,求的值.【詳解】解:,(1)的最小正周期;(2),,當時,即,取得最小值為,當時,即,取得最大值為,最大值與最小值之和為3,,,故的值為1.【點睛】本題主要考查三角函數的性質和圖象的應用,屬于基礎題.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)設點,求得向量的坐標,根據向量的數量積的運算,求得,即可求得答案.(Ⅱ)設M點的坐標為,把恒成立問題轉化為恒成立,列出方程組,即可求解.【詳解】(Ⅰ),,(Ⅱ)設M點的坐標為,則,,,.【點睛】本題主要考查了向量的坐標運算,以及向量的數量積的應用和恒成立問題的求解,其中解答中合理利用向量的坐標運算及向量的數量積的運算,以及轉化等式的恒成立問題,列出相應的方程組是解答的關鍵,著重考查了推理與運算能力.19、見解析【解析】

根據三角函數定義列方程解得,再根據三角函數定義求的值.【詳解】,(1)當時,.(2)當時,,解得.當時,;當時,.綜上當時,;當時,;當時,.【點睛】本題考查三角函數定義,考查基本分析求解能力,屬基礎題.20、(Ⅰ),(Ⅱ)或【解析】試題分析:解:(Ⅰ)建立,.(Ⅱ),結合圖象可知或.試題解析:解:(Ⅰ)①②解得,.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論