2024屆湖北省松滋一中高三下學期一??荚嚁祵W試題含解析_第1頁
2024屆湖北省松滋一中高三下學期一??荚嚁祵W試題含解析_第2頁
2024屆湖北省松滋一中高三下學期一??荚嚁祵W試題含解析_第3頁
2024屆湖北省松滋一中高三下學期一??荚嚁祵W試題含解析_第4頁
2024屆湖北省松滋一中高三下學期一??荚嚁祵W試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖北省松滋一中高三下學期一??荚嚁祵W試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.方程的實數根叫作函數的“新駐點”,如果函數的“新駐點”為,那么滿足()A. B. C. D.2.已知等差數列的公差不為零,且,,構成新的等差數列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.133.若復數為虛數單位在復平面內所對應的點在虛軸上,則實數a為()A. B.2 C. D.4.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件5.如圖,在中,,是上一點,若,則實數的值為()A. B. C. D.6.已知函數,若所有點,所構成的平面區域面積為,則()A. B. C.1 D.7.若,則的值為()A. B. C. D.8.已知函數在上都存在導函數,對于任意的實數都有,當時,,若,則實數的取值范圍是()A. B. C. D.9.若不等式在區間內的解集中有且僅有三個整數,則實數的取值范圍是()A. B.C. D.10.如圖,在△ABC中,點M是邊BC的中點,將△ABM沿著AM翻折成△AB'M,且點B'不在平面AMC內,點P是線段B'C上一點.若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經過△AB'CA.重心 B.垂心 C.內心 D.外心11.已知函數是定義在上的奇函數,函數滿足,且時,,則()A.2 B. C.1 D.12.復數(i為虛數單位)的共軛復數是A.1+i B.1?i C.?1+i D.?1?i二、填空題:本題共4小題,每小題5分,共20分。13.已知非零向量,滿足,且,則與的夾角為____________.14.已知多項式滿足,則_________,__________.15.函數的極大值為______.16.設函數,若對于任意的,∈[2,,≠,不等式恒成立,則實數a的取值范圍是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)討論函數f(x)的極值點的個數;(2)若f(x)有兩個極值點證明.18.(12分)在創建“全國文明衛生城”過程中,運城市“創城辦”為了調查市民對創城工作的了解情況,進行了一次創城知識問卷調查(一位市民只能參加一次),通過隨機抽樣,得到參加問卷調查的人的得分統計結果如表所示:.組別頻數(1)由頻數分布表可以大致認為,此次問卷調查的得分似為這人得分的平均值(同一組中的數據用該組區間的中點值作代表),利用該正態分布,求;(2)在(1)的條件下,“創城辦”為此次參加問卷調查的市民制定如下獎勵方案:①得分不低于的可以獲贈次隨機話費,得分低于的可以獲贈次隨機話費;②每次獲贈的隨機話費和對應的概率為:贈送話費的金額(單位:元)概率現有市民甲參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求的分布列與數學期望.附:參考數據與公式:,若,則,,19.(12分)改革開放40年,我國經濟取得飛速發展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分數的頻率分布直方圖如圖所示.規定得分在80分以上為交通安全意識強.安全意識強安全意識不強合計男性女性合計(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯表,并判斷有多大把握認為交通安全意識與性別有關;(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82820.(12分)某工廠生產某種電子產品,每件產品不合格的概率均為,現工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產品,且每件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產品每個一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗次或次.設該工廠生產件該產品,記每件產品的平均檢驗次數為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數越少;(ii)當時,求使該方案最合理時的值及件該產品的平均檢驗次數.21.(12分)如圖,為等腰直角三角形,,D為AC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.22.(10分)已知函數,.(1)求曲線在點處的切線方程;(2)求函數的極小值;(3)求函數的零點個數.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由題設中所給的定義,方程的實數根叫做函數的“新駐點”,根據零點存在定理即可求出的大致范圍【詳解】解:由題意方程的實數根叫做函數的“新駐點”,對于函數,由于,,設,該函數在為增函數,,,在上有零點,故函數的“新駐點”為,那么故選:.【點睛】本題是一個新定義的題,理解定義,分別建立方程解出存在范圍是解題的關鍵,本題考查了推理判斷的能力,屬于基礎題..2、D【解析】

利用等差數列的通項公式可得,再利用等差數列的前項和公式即可求解.【詳解】由,,構成等差數列可得即又解得:又所以時,.故選:D【點睛】本題考查了等差數列的通項公式、等差數列的前項和公式,需熟記公式,屬于基礎題.3、D【解析】

利用復數代數形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復平面內所對應的點在虛軸上,,即.故選D.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,是基礎題.4、B【解析】

先求出滿足的值,然后根據充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎.解題時可根據條件與結論中參數的取值范圍進行判斷.5、C【解析】

由題意,可根據向量運算法則得到(1﹣m),從而由向量分解的唯一性得出關于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點睛】本題考查平面向量基本定理,根據分解的唯一性得到所求參數的方程是解答本題的關鍵,本題屬于基礎題.6、D【解析】

依題意,可得,在上單調遞增,于是可得在上的值域為,繼而可得,解之即可.【詳解】解:,因為,,所以,在上單調遞增,則在上的值域為,因為所有點所構成的平面區域面積為,所以,解得,故選:D.【點睛】本題考查利用導數研究函數的單調性,理解題意,得到是關鍵,考查運算能力,屬于中檔題.7、C【解析】

根據,再根據二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應用,考查了二項式展開式通項公式的應用,考查了數學運算能力8、B【解析】

先構造函數,再利用函數奇偶性與單調性化簡不等式,解得結果.【詳解】令,則當時,,又,所以為偶函數,從而等價于,因此選B.【點睛】本題考查利用函數奇偶性與單調性求解不等式,考查綜合分析求解能力,屬中檔題.9、C【解析】

由題可知,設函數,,根據導數求出的極值點,得出單調性,根據在區間內的解集中有且僅有三個整數,轉化為在區間內的解集中有且僅有三個整數,結合圖象,可求出實數的取值范圍.【詳解】設函數,,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數根;當時,在內的解集中僅有三個整數,只需,,所以.故選:C.【點睛】本題考查不等式的解法和應用問題,還涉及利用導數求函數單調性和函數圖象,同時考查數形結合思想和解題能力.10、A【解析】

根據題意P到兩個平面的距離相等,根據等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點.故選:A.【點睛】本題考查了二面角,等體積法,意在考查學生的計算能力和空間想象能力.11、D【解析】

說明函數是周期函數,由周期性把自變量的值變小,再結合奇偶性計算函數值.【詳解】由知函數的周期為4,又是奇函數,,又,∴,∴.故選:D.【點睛】本題考查函數的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.12、B【解析】分析:化簡已知復數z,由共軛復數的定義可得.詳解:化簡可得z=∴z的共軛復數為1﹣i.故選B.點睛:本題考查復數的代數形式的運算,涉及共軛復數,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、(或寫成)【解析】

設與的夾角為,通過,可得,化簡整理可求出,從而得到答案.【詳解】設與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.【點睛】本題主要考查向量的數量積運算,向量垂直轉化為數量積為0是解決本題的關鍵,意在考查學生的轉化能力,分析能力及計算能力.14、【解析】∵多項式滿足∴令,得,則∴∴該多項式的一次項系數為∴∴∴令,得故答案為5,7215、【解析】

先求函的定義域,再對函數進行求導,再解不等式得單調區間,進而求得極值點,即可求出函數的極大值.【詳解】函數,,,令得,,當時,,函數單調遞增;當時,,函數單調遞減,當時,函數取到極大值,極大值為.故答案為:.【點睛】本題考查利用導數研究函數的極值,考查函數與方程思想、轉化與化歸思想,考查運算求解能力,求解時注意定義域優先法則的應用.16、【解析】試題分析:由題意得函數在[2,上單調遞增,當時在[2,上單調遞增;當時在上單調遞增;在上單調遞減,因此實數a的取值范圍是考點:函數單調性三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】

(1)求得函數的定義域和導函數,對分成三種情況進行分類討論,判斷出的極值點個數.(2)由(1)知,結合韋達定理求得的關系式,由此化簡的表達式為,通過構造函數法,結合導數證得,由此證得成立.【詳解】(1)函數的定義域為得,(i)當時;,因為時,時,,所以是函數的一個極小值點;(ii)若時,若,即時,,在是減函數,無極值點.若,即時,有兩根,不妨設當和時,,當時,,是函數的兩個極值點,綜上所述時,僅有一個極值點;時,無極值點;時,有兩個極值點.(2)由(1)知,當且僅當時,有極小值點和極大值點,且是方程的兩根,,則所以設,則,又,即,所以所以是上的單調減函數,有兩個極值點,則【點睛】本小題主要考查利用導數研究函數的極值點,考查利用導數證明不等式,考查分類討論的數學思想方法,考查化歸與轉化的數學思想方法,屬于中檔題.18、(1)(2)詳見解析【解析】

由題意,根據平均數公式求得,再根據,參照數據求解.由題意得,獲贈話費的可能取值為,求得相應的概率,列出分布列求期望.【詳解】由題意得綜上,由題意得,獲贈話費的可能取值為,,的分布列為:【點睛】本題主要考查正態分布和離散型隨機變量的分布列及期望,還考查了運算求解的能力,屬于中檔題.19、(Ⅰ).0.2(Ⅱ)見解析,有的把握認為交通安全意識與性別有關(Ⅲ)見解析,【解析】

(Ⅰ)直接根據頻率和為1計算得到答案.(Ⅱ)完善列聯表,計算,對比臨界值表得到答案.(Ⅲ)的取值為,計算概率得到分布列,計算數學期望得到答案.【詳解】(Ⅰ),解得.所以該城市駕駛員交通安全意識強的概率.(Ⅱ)安全意識強安全意識不強合計男性163450女性44650合計2080100,所以有的把握認為交通安全意識與性別有關(Ⅲ)的取值為所以的分布列為期望.【點睛】本題考查了獨立性檢驗,分布列,數學期望,意在考查學生的計算能力和綜合應用能力.20、(1)見解析,(2)(i)見解析(ii)時平均檢驗次數最少,約為594次.【解析】

(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進而可求出期望.(2)(i)由記,根據函數的單調性即可證出;記,當且取最小值時,該方案最合理,對進行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因為,所以在上單調遞增,故越小,越小,即所需平均檢驗次數越少,該方案越合理記當且取最小值時,該方案最合理,因為,,所以時平均檢驗次數最少,約為次.【點睛】本題考查了離散型隨機變量的分布列、數學期望,考查了分析問題、解決問題的能力,屬于中檔題.21、(1)見解析;(2)【解析】

(1)由折疊過程知與平面垂直,得,再取中點,可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點,以為原點,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論