




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
IncreasingElectricPowerSystemFlexibility
TheRoleofIndusTRIalelecTRIfIcaTIonandGReenhydRoGenPRoducTIon
AReportofthe
ES
EnErgySyStEmSIntEgratIongroup
EnergySystemsIntegrationGroup’s
FlexibilityResourcesTaskForce
January2022
1
ESIG
IP
AboutESIG
TheEnergySystemsIntegrationGroupisanonprofitorganization
thatmarshalstheexpertiseoftheelectricityindustry’stechnical
communitytosupportgridtransformationandenergysystems
integrationandoperation.Moreinformationisavailableat
https://www.esig.energy
.
ESIGPublicationsAvailableOnline
Thisreportisavailableat
https://www.esig.energy/
reports-briefs.
GetinTouch
Tolearnmoreaboutthetopicsdiscussedinthisreportorformore
informationabouttheEnergySystemsIntegrationGroup,please
sendanemailto
info@esig.energy
.
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroupii
IncreasingElectricPowerSystemFlexibility:TheRoleofIndustrialElectrificationand
GreenHydrogenProduction
AReportoftheFlexibilityResourcesTaskForce
oftheEnergySystemsIntegrationGroup
Preparedby
AidanTuohy,ElectricPowerResearchInstitute
NiallMacDowell,ImperialCollegeLondon
TaskForceMembers
WilliamD’haeseleer,KULeuven
ElizabethEndler,Shell
AnthonyKu,NICEAmericaResearch
NiallMacDowell,ImperialCollegeLondon
PierluigiMancarella,UniversityofMelbourne
JuliaMatevosyan,EnergySystemsIntegrationGroup
TobyPrice,AustralianElectricityMarketOperator
AidanTuohy,ElectricPowerResearchInstitute
SuggestedCitation
FlexibilityResourcesTaskForce.2022.IncreasingElectricPowerSystemFlexibility:TheRoleofIndustrialElectrificationandGreenHydrogenProduction.Reston,VA:EnergySystemsIntegrationGroup.
https://www.esig.energy/
reports-briefs.
Thisworkwassupportedbyfundsfromthe
AmericanCouncilonRenewableEnergy(ACORE).
Thetaskforcewouldliketoacknowledgethevaluableinput
andsupportofKarinMatchettinpreparingthisreport.
Design:DavidGerratt/NonprofitD
?2022EnergySystemsIntegrationGroup
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroupiii
Contents
1EvolvingReliabilityNeedsforaDecarbonizedGrid
1ACriticalNeedforNewSourcesofFlexibility
2ServicesProvidedbyIndustrialElectrificationandElectrolyticHydrogenProductiontotheElectricitySystem
3IndustrialElectrificationandElectricPowerSystemFlexibility
3ElectricityUseinIndustryToday
3PathwaysforContributionofEIIstoDecarbonization
8ProvisionofFlexibilityfromEnergy-IntensiveIndustries
8IncreasedDemandasaResultofIncreasedElectrificationofIndustry
9ProvisionofDemandResponseviaIndustrialLoads
10ProvisionofGridServices
11BarrierstotheProvisionofFlexibilitybyNewlyElectrifiedLoads
12RoleofHydrogenProductioninGridDecarbonizationandFlexibility
13PotentialApplicationsofHydrogeninthePowerSystem
14ConsiderationsforObtainingFlexibilityfromGreenHydrogen
inaFutureHigh-RenewablesGrid
17ProvisionofGridServices
21AdvancesNeededinSystemPlanning,Operations,andMarketDesign
24References
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroupiv
EvolvingReliabilityNeeds
foraDecarbonizedGrid
A
selectricpowersystemscontinuetodecarbonizeandlevelsofrenewableenergycontinuetorise,sourcesofsystemflexibilitywillbecomeincreas-inglyimportant.Asflexibilityfromtraditionalresourcesmaybereducedwiththeretirementofconventional
coal-andnaturalgas–firedgeneration,othersources
suchasdemand-sideflexibilitywillbecomemuchmoreimportant.Concurrently,theincreasedelectrificationoftheoverallenergysystemwillcreatenewloadson
theelectricpowersystem,whichwillhavethepotentialtocontributetosuchsystemflexibility.
Akeyissueforelectricitysystemoperationsandplan-ningistowhatextentthenewloadsmaycontributetosystemflexibility:whetherandhowtheseloadscanshiftelectricalenergydemandfromperiodswhenrenewableelectricityislessabundanttoperiodswhenthereis
alargeamountavailable.
ACriticalNeedforNewSources
ofFlexibility
Manydecarbonizationstudiesdemonstratetheincreas-ingimportanceofthisflexibilityascleanenergy,particu-larlyvariablerenewablessuchaswindandsolar,becomesalargerportionoftheresourcemix(EPRI,2021;Larsonetal.,2020;Williamsetal.,2021).Forexample,hydro-genproductionandtheelectrificationofindustrialloadsareoftencitedasimportantsourcesofflexibilityaslevelsofrenewablessurpass80or90percentoftotalelectricity(EPRI,2021).Atsuchhighlevelsofrenewables,the
needtoshiftenergyacrosstime(andpotentiallyspace),aswellastheexpectedretirementofexistingsources
offlexibility,meansthatelectricpowersystemflexibilityfromthetypicalsourcestoday—conventionalnaturalgasplants,batteries,interconnectionwithneighboringgrids,
andrenewablesthemselves—mayneedtobesupple-
mentedwithnewsources.
Theneedforflexibilitystemsfromtwoissuesrelated
tosupplyanddemandbalancingofelectricitysystems
thatarereliantonvariablerenewableelectricitygen-
eration:oversupplyofgeneration,andstructuralenergydeficitsduetothevariabilityassociatedwithrenewablegeneration(EPRI,2016).Thefirstissuearisesfromthelimitedcapacityfactorsofwindandsolar.Highelectri-cal-energypenetrationofnaturallyvariablesourcessuchaswindandsolarphotovoltaicscouldresultinsubstan-tialovercapacitycomparedtothepeakloadoftheelec-tricalpowersystem,which,intheabsenceofdedicatedmeasures,wouldleadtonegativenet,orresidual,loadin
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup1
Theabilitytoshiftdemandfromperiods
ofenergydeficitstoperiodswithmore
renewablesavailablecouldbeasignificantsourceofflexibility.Theneedforthisflex-ibilitywillberegion-specificanddependontheparticularmixofgeneration,transmis-sion,andloadontheelectricitysystem.
manyhours.1Whiletheinstantaneousexcesspower
generationcouldalwaysbecurtailed,analternativeistodivertthatelectricpowertosectorsoutsidetheclassicalelectricgridsystem.Thiswouldinvolveusingflexible
electricloadstoincreasedemandtomaintainthesupply/demandbalance.
Thesecondissue,energydeficits,canoccurinsystems
wheretherearelongperiodswithrelativelylittlewindorsolarpowercomparedtosystemdemand,duetoprevail-ingweatherconditions.(Thisislikelytobeparticularlyimportantforwindenergy,asdemonstratedrecently
intheUKandEUregionwherewindwasrelatively
lowforalongperiodoftime.)Insuchcircumstances,
resourcesthatarenotoftenusedwillneedtobeavailabletoprovideenergywhencalledupon.Theabilitytoshiftdemandfromperiodsofenergydeficitstoperiodswithmorerenewablesavailablecouldthereforebeasignifi-
cantsourceofflexibility.Theneedforthisflexibility
willberegion-specificanddependontheparticularmixofgeneration,transmission,andloadontheelectricitysystem.
Theabsolutequantityofflexiblecapacity(howeverde-fined)thatisrequiredtomanageoversupplyofrenew-ableenergyappearslow,givingopportunityforflexibilityviaindustrialelectrification,includinghydrogenproduc-tion,toplayanimportantrole.Currently,theelectrifica-tionofindustrialloadsishappeningslowly,andhydrogenproductionisstillrelativelyexpensive.However,cost
declinesarepredictedforbothoftheseresources,similartowhathasbeenachievedinrecentyearsforwind,solarphotovoltaics,andbatterystorage.In2021,theU.S.
DepartmentofEnergy,forexample,setagoalofreduc-ingthecostofelectrolytichydrogenby80percentto
$1perkilograminonedecade.2
ServicesProvidedbyIndustrial
ElectrificationandElectrolyticHydrogenProductiontotheElectricitySystem
Thisreportlaysoutviablewaysthatindustrialelectri-
ficationandhydrogenproductionmayplayarolein
providingflexibilityinthefutureelectricpowersystem.Whereasmostanalysisinthisspacefocusesontheover-allenergysystemandaspectssuchasthecostreductionrequiredtoenablemoreindustrialelectrificationand
hydrogen,thefocushereisondescribinghowthesetech-nologiesmayimpactandprovideservicestotheelectricpowersystem.Theunderlyingassumptionisafuture
wherelevelsofelectricity-generatingrenewablesare
high,at70percentannualenergypenetrationorhigher,asthisisthepointatwhichtheelectrificationofindus-trialprocessesandtheeconomicproductionofhydrogenwillbothbeneededandbereadytoservethisneed.
Theintentofthisreportistodiscusstheelectricpowersystemsperspectiveforthesenewelectricalloads.Build-ingontheEnergySystemsIntegrationGroup’swork
onrenewableintegrationoverthepastdecades,thisreportlaysouthowveryhighlevelsofrenewable
energycouldbesupportedbyleveragingopportu-nitiesintheindustrialsector.
Thereportfirstdiscussessourcesofindustrialelectrifi-
cationandthepotentialflexibilitythatcouldbederivedfromtheresultinglargeelectricalloadsinenergy-intensiveindustries(EIIs).Itthenexaminesthepotentialrole
ofhydrogenproductioninprovidingflexibilitytothefuturehigh-renewablessystem,withafocusongreenhydrogen.Thereportconcludesbysummarizinghigh-leveloperationsandplanningissuesforpowersystemsandidentifyingkeyareasneedingfurtherwork.
1Netload,orresidualload,aredefinedasthetotalloadminustheinstantaneousgenerationofsolarphotovoltaicsandwind.“Net”and“residual”canbeusedsynonymously.
2See
/eere/fuelcells/hydrogen-shot
.
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup2
IndustrialElectrificationand
ElectricPowerSystemFlexibility
ity.Theyprovidethebasisformanychemicals
E
IIsareatthefoundationofthebroadereconomyandenableavastamountofotherindustrialactiv-
usedinindustry,produceconstructionmaterials,supportagricultureandpaperindustries,andfarmore.Theylinktoallothereconomicsectors,arethemselvesextensivelyinterlinked,andaredeeplyconnectedwithinthebroaderenergysystem(seeFigure1,p.4).EIIsareoftenvery
carbon-intensive,andtheycanbehardertodecarbonizethanothersectorssuchastheelectricitysector.One
optionfortheirdecarbonizationistoelectrifytheseindustrialloadsandrelyoncleanelectricitytopowertheloads.Thisisnotsimple,however.Anysignificantchangeintheprovisionofenergyintheseindustries,theiroperation,andtheircoststructurewillhave
profoundandsystemicramificationsacrossthebroadereconomy(Lovins,2021a;2021b).
ElectricityUseinIndustryToday
Theshareofelectricityamongallenergyinputsintheindustrialsectorvarieswidely,withageneralshifttowardincreasedelectricityuseintheindustrialsectorexpectedintheneartomediumterm.Thelowestshare,at14per-cent,isinnon-metallicminerals(mostlycement,glass,andceramicsindustries),andthehighestshareof65percentisinnon-ferrousmetals,composedmostlyofprimary
aluminumproductionthatuseselectrolysistoreduce
aluminumfromaluminumoxide.Electricityismostlyusedformachinedrives,toprovideelectricalcontrol
ofindustrialprocesses,andforsomemeansofelectric
heating(includingelectricarc,infraredradiation,elec-tronbeam,andplasmaheating).Someindustrialelectrictechnologiesuseelectricityasanalternativetodirectlyprovidingheat,forexample,usingmechanicalwork
inmechanicalvaporrecompressionheatpumpsorseparatingmaterialsusingselectivelypermeable
membranesratherthanusingheat.Othermeansof
materialseparationuseelectricpotentialgradients(e.g.,electrodialysis)orelectrolysis(e.g.,electrolyticrefiningofaluminaandcopper).Theincreasingdemandforrenew-ableenergytechnologywillitselfleadtoageneralshifttowardhigherelectricityuseintheindustrialsectorduetotheincreasedproductionandrefiningofrareearth
elementsandpotentialincreaseintherecyclingofmetals.
PathwaysforContributionofEIIs
toDecarbonization
Currently,industryaccountsformorethanone-thirdoftheglobalfinalenergyuse,makingitanessentialsectortodecarbonize.However,EIIs,owingtotheirheteroge-neityandtheneedforhigh-qualityheattotransform
rawmaterialsintomorerefinedmaterials,areparticularlychallengingtodecarbonize.Incontrasttotheelectric
powersector,wherelow-carbonelectricityisusedby
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup3
FIGuRE1
ConnectionsBetweenEnergy-IntensiveIndustriesandtheRestoftheEconomy
Note:TheredtextreferstotheEIIsdiscussedinthisreport.
Source:Wyns,Khandekar,andRobson(2018).
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup4
loadsinexactlythesamewayasfossilfuel–basedelec-tricity,theconceptofabaselineor“archetypal”industryfacilityisdifficulttodefine.Facilities’electricalandnon-electricalloads,operatingprocedures,andpracticesvaryfromlocationtolocationandhaveasignificanttime
dependenceregardingwhentheyareused.Inaddition,manyfacilitieswithinagivensectorusemultiplefuel
sourcesandhavemultiplepointsourcesofcarbondioxide(CO2).
ItisimportanttonotethatEIIshavealreadyplayedanimportantroleinemissionsreductions.Between1990and2015inEurope,EIIsreducedtheirgreenhouse
gasemissionsby36percent,representingapproximately28percentofeconomy-widereductions,despitethefact
thatEIIswereresponsibleforonly15percentoftotal
greenhousegasemissionsintheEuropeanUnionin
2015.Todate,EIIemissionsreductionshavecome
aboutthroughacombinationofimprovementsinenergyefficiency,fuelswitching,andplantclosuresorreducedoutput,largelyasaresultofthe2008financialcrisis.
Therearemanypathwaystofurtheremissionsreduc-
tions,asshowninTable1.Inadditiontofurtherenergyefficiencyimprovements,processintegration,andtheuseofcarboncapture,utilization,andstoragetechnologies(Wei,McMillan,anddelaRueduCan,2019),electri-ficationhasthebroadpotentialtocontributeacrossallsectors,throughbothheatandmechanicalprocesses
andthroughelectrolysisforhydrogenproduction.
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup5
Heat
Alargeproportionofindustrialemissionsarisefromtheprovisionofheat(orthermalpower).Giventherapidlyimprovingeconomicsofrenewable/low-carbonelectricalpowerandenergystorage,theelectrificationofEII
heatingneedsisbecomingmoreattractiveasameanstodecarbonizethissector.Hightoveryhightemperatures(above500°C)accountforoverhalfofindustrialheat
demand,andveryhightemperatures(above1000°C)
accountfor33percentofdemand.Electrificationof
heatdemandcanbeappliedacrossmostbasicmaterialsindustries,anditisaparticularlypromisingapproachforemissionsmitigationinindustriessuchasceramics,glass,andpaper.Low-temperatureheat(definedhereaslowerthan300°C)canbeprovidedrelativelyeasilyviaelectricboilersandelectricarc,infrared,induction,dielectric,
directresistance,microwave,andelectronbeamheating.However,toeconomicallyachievetemperaturesapproaching
TABlE1
EmissionsReductionApproachesforVariousEnergy-IntensiveIndustries
Electrification(Heatand
Mechanical)
Electrification(Processes:
Electrolysis/
Electro-
chemistry
ExcludingH2)
Hydrogen(Heatand/orProcess)
Carbon
Capture
and
utilization
Biomass
(Heatand
Feedstock)/Biofuels
Carbon
Capture
and
Storage
Other
(IncludingProcess
Integration)
Steel
xxx
xx
xxx
xxx
x
xxx
Avoidanceofinter-
mediateprocess
stepsandrecycling
ofprocessgases:xxx
Recyclinghigh-qualitysteel:xxx
Chemicalsandfertil-izers
xxx
xxx
xxx
xxx
xxx
xxx(in
particular
foram-
moniaand
ethylene
oxide)
Useofwastestreams(chemicalrecycling):xxx
Cement
Lime
xx
(cement)
x
(lime)
o
(cement)
o
(lime)
x
(cementand
lime)
xxx
(cementandlime)
xxx
(cement)
x
(lime)
xxx
(cementandlime)
Alternativebinders
(cement):xxx
Efficientuseofcementinconcretebyimprovingconcretemixdesign:xxx
Useofwastestreams(cement):xxx
Refining
xx
o
xxx
xxx
xxx
xxx
Efficiency:xxx
Ceramics
xxx
o
xx
x
x
o
Efficiency:xxx
Paper
xx
o
o
o
xxx
o
Efficiency:xxx
Glass
xxx
o
x
o
xxx
o
Higherglassrecycling:xx
Non-
ferrous
metals/
alloys
xxx
xxx
x
x
xxx
x
Efficiency:xxx
Recyclinghighqualitynon-ferrous:xxx
Inertanodes:xxx
o=Limitedornosignificnatapplicationforeseen
x=Possibleapplicationbutnotmainrouteorwide-scaleapplication
xx=Mediumpotentialxxx=Highpotential
xxx=Sectoralreadyappliestechnologyonlargescale(canbeexpandedinsomecases)
Note:Evenafterdecarbonizingheatforcement,reaction-basedemissionsremain.
Source:Wyns,Khandekar,andRobson(2018).
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup6
1,000°C,modificationsofelectricfurnacetechnology
areneeded.Itistechnicallypossibletoelectrifyhigh-
temperatureprocessheatingusing,forexample,electricarcfurnacesorelectriccalciners.Toachievetemperaturesbeyond1,000°C,asisrequiredintheproductionof
cementandglass,significantadditionalresearch,development,anddemonstrationisrequired.
Giventhedeeplyintegratednatureoftheseprocesses,anyalterationtoaparticularelementofaprocesswill
necessarilyinducechangestootheraspects.Electrifica-tionofthefurnacethereforenecessitatesadjustments
tootherstagesofproductionandwillhavecapitalcostimplications.Insomesectors,suchastherefining,steel,chemicals,andcementsectors,theelectrificationofheatcanbeatbestapartialsolutionandwilllikelyhavetobeusedincombinationwithothertechnologiesto
achievefulldecarbonization.
IndustrialProcesses
Processelectrificationisalreadyquitewidelyappliedin,forexample,secondarysteel,non-ferrousmetals,ferro-alloys,andsiliconproduction.Theelectrificationofironandsteelproductioncantakeseveralpossibleroutesandisanareaofactiveinterestformanyintheindustry
(Edie,2021).Onerouteistoincreasethecircularityoftheproductflowintheeconomybyincreasingrecyclingratesandtheuseofsecondarysteel,whichisproducedinelectricarcfurnaces.Ingeneral,steelretainsasignificantoverallrecyclingrate.In2014,thisratestoodat85per-cent(TataSteel,2021);however,whendemandforsteelishigh,thisproportiondropssignificantly—in2016
itwas35.5percent—owingtoamismatchbetween
demandforsteelandavailabilityofscrap(BIR,2020).Lookingbeyondironandsteel,severalothermetals
areproducedthroughelectrolysis,includingaluminum,nickel,andzinc.Theeconomicviabilityofelectrolyticapproachestometalrefiningis,ofcourse,afunction
ofthecostandcarbonintensityofelectricityandthecostofelectrolyzers(Allanore,2014).
Anotheroptionforindirectdecarbonizationviaelectri-fication,asdiscussedinmoredetailinthenextsection,
Hydrogencanplayakeyroleinindustrial
decarbonizationwhenthehydrogenis
producedusingzero-carbonelectricityorfromnaturalgaswithcarboncaptureandstorage.Itcanbeusedasanenergycarrier,asindustrialfeedstockforproductsand
fuels,orforlong-durationenergystorage.
iselectrolytichydrogen.Hydrogencanplayakeyroleinindustrialdecarbonizationwhenthehydrogenispro-ducedusingzero-carbonelectricityorfromnaturalgaswithcarboncaptureandstorage.Itcanbeusedasan
energycarrier,asindustrialfeedstockforproductsandfuels,orforlong-durationenergystorage.
Keytocontinuingtodecarbonizeindustriesthrough
increasingtheelectrificationofindustrialprocesseswillbetheprogressionoftechnologiestotechnologyreadinesslevels(TRL)above7andthefurtherdecarbonizationoftheelectricitygrid.3Sufficienttechnologicalmaturityisnotexpecteduntilthe2030s,duetotheneedtodemon-stratethesetechnologiesandmobilizecapacitytodeploythem,butbythentheymayprovideafruitfulwayto
decarbonizethesystem.Economicincentivesortechno-logicalbreakthroughsmaymakethesetechnologiesrel-evantevensooner;however,2030isalreadywellwithintheplanningtimeframefortheelectricpowerindustry.
Themovetowardfuel-switchingfromnaturalgasto
electricitywillbedrivenbyenergyandenvironmental
policies(EPRI,2018);however,electrificationbenefits
forindustrialprocessingalsoincludenon-energybenefitssuchasproductqualityandyield;processtime,control-lability,andflexibility;andsafety.Forexample,potentialnon-energybenefitsininductionheatingincludefasterstart-up,enhancedprocesscontrollabilityandflexibility,reducedspacerequiredforfuelstorageandhandling,animprovedworkingenvironmentforworkersduetothe
eliminationofcombustionemissions,andlesswasteheat.
3TheTRLscalerunsfrom1through9,with1beingrelatedto(fundamental)researchand9referringtofulltechnologicalmaturity.
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup7
ProvisionofFlexibility
fromEnergy-IntensiveIndustries
T
heelectrificationofindustry,acriticalcomponentofindustrialdecarbonization,providesopportuni-tiesforthesectortooffermuch-neededflexibilitytoelectricitygridswithhighlevelsofvariablerenewableenergy.Thisflexibilitycanbeprovidedvialow-orzero-carbongenerationresources(includinghydrogen,dis-
cussedbelow);grid-scaleenergystorage;or,asdiscussedhere,demandresponse.Importantly,theabsolutequan-tityofcurrentlyavailableflexiblecapacitythatisrequiredonavery-high-renewablesgridappearstobelowin
comparisontothetotalinstalledcapacitiesofsupplyanddemandresources;hence,flexibilitythroughindustrialelectrificationcouldintheoryplayanimportantrole.
Astheelectrificationoftheindustrialsectorproceeds,theincreaseddemandforelectricityislikelytorequiresignificantexpansionincleanelectricitygeneration
technologiessuchaswindandsolarphotovoltaics.The
variabilityoftheseresources,inturn,increasestheneedforflexibleloadsthatcanrespondtothechangingout-putofrenewablegenerationonthegrid.Ifhighlyelectri-fiedindustriesareincentivizedtodoso,somewillbeinapositiontoprovidesignificantflexibilitythroughflexibleloadsandtheprovisionofenergystoragethatsupportsgridreliabilityandflexibility.GiventhehighlycoupledwayinwhichtheEIIsandelectricitysystemwillco-
evolve,understandinghowEIIscancontributetothe
flexibilityandreliabilityofthepowersystemiskey.
IncreasedDemandasaResult
ofIncreasedElectrificationofIndustry
Thelarge-scaleelectrificationofEIIswill,directlyor
indirectly,requiresignificantamountsofelectricityto
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup8
operate.InEurope,forexample,EIIsareprojectedtobecomethelargestelectricityconsumerby2050,con-suminganadditional3,000to4,400TWhcompared
to2016levels(a120to180percentincrease)(Eurostat,2021).Manysuchloadswouldbeexpectedtohavea
relativelyconstantdemand,astheunderlyingindustrialprocessesaredesignedtooperateatsteadystate,at
leastintheircurrentform.
InastudybytheElectricPowerResearchInstitute
evaluatingtheimpactofindustrialelectrificationontheelectricitygrid,thescenariowiththehighestlevelsof
electrificationshowedtheelectricityshareofindustry
finalenergydemandincreasingfrom27percentinthe
referencescenarioto45percentin2050(EPRI,2018),demonstratingthatindustrialelectrificationcouldpro-videopportunitiesforcloserintegrationandoptimizationoftheU.S.energysystem.Anotherstudylookingat
Chinafoundthatmaximizingelectrificationusingcom-merciallyavailabletechnologiesinindustriesincludingsteel,foodandbeverages,glass,andpulpandpapercouldincreaseitsindustrialsector’sshareofelectricityconsump-tionin2050fromabout30percentunderbusiness-as-usualassumptionstonearly40percent(Khannaetal.,
2017).
Completelyelectrifyingtheindustrialsectorwould
requireasignificantamountofnewelectricitygenerationcapacity,evenwhenelectrictechnologiesprovideimprovedenergyefficiency.Onestudyexaminedascenarioinwhichelectro-thermaltechnologiesforheatingandelectrolysisformaterialseparationsreplacedallenergyrequirementsofeightEIIsintheEuropeanUnionandestimateda
four-foldincreaseinelectricitydemandby2050(Lech-tenb?hmeretal.,2016).Itfoundthatthereplacementofpetroleum-derivedfuelsandfeedstockswithH2,CO2,
andsyngaswouldinvolvenearly10timesmoreelectric-ityby2050.ThecarbonrequiredtoproducereplacementhydrocarbonscouldeitherbecapturedCO2frompowerplants,capturedfromtheCO2/COportionofsyngas
(CO2/CO+H2),orobtainedfromdirectaircapture.
Switchingfromfossiltonon-fossilindustrialfeedstocksalsogreatlyincreasestheelectricityconsumed.Forex-ample,onestudyanalyzedtheswitchingoffeedstocksfortheproductionofcommonindustrialchemicals
fromfossiltonon-fossilfeedstocksusingelectrolytic
technologies,andestimatedth
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 攪拌車出租合同協議書
- 肉牛投放協議書
- 船只安全協議書
- 聯勤保障協議書
- 有機肥授權銷售協議書
- 碰壞東西協議書
- 繼母分錢協議書
- 花園修剪協議書
- 肉雞飼養(yǎng)協議書
- 地下室拆模合同協議書
- 北京版二年級下冊三位數退位減法豎式計算題200道及答案
- 電子商務設計師(基礎知識、應用技術)合卷軟件資格考試(中級)試卷與參考答案(2025年)
- 2025年見證取樣員必考題庫與答案
- 《信息安全技術 數據交易服務安全要求》
- 《汽車電工電子基礎》課件 5.2二極管及其測量
- 反射療法師理論考試復習題及答案
- 2023版中職教材-心理健康與職業(yè)生涯-第11課-主動學習-高效學習-課件
- 2024春期國開電大本科《外國文學》在線形考(形考任務一至四)試題及答案
- 陽光雨棚制作安裝合同范本
- 福建小鳳鮮禽業(yè)有限公司100萬羽蛋雞養(yǎng)殖基地項目環(huán)境影響報告書
- CJT 489-2016 塑料化糞池 標準
評論
0/150
提交評論