山東省青島市南區重點名校2023-2024學年十校聯考最后數學試題含解析_第1頁
山東省青島市南區重點名校2023-2024學年十校聯考最后數學試題含解析_第2頁
山東省青島市南區重點名校2023-2024學年十校聯考最后數學試題含解析_第3頁
山東省青島市南區重點名校2023-2024學年十校聯考最后數學試題含解析_第4頁
山東省青島市南區重點名校2023-2024學年十校聯考最后數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省青島市南區重點名校2023-2024學年十校聯考最后數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.根據文化和旅游部發布的《“五一”假日旅游指南》,今年“五一”期間居民出游意愿達36.6%,預計“五一”期間全固有望接待國內游客1.49億人次,實現國內旅游收入880億元.將880億用科學記數法表示應為()A.8×107 B.880×108 C.8.8×109 D.8.8×10102.“a是實數,|a|≥0”這一事件是()A.必然事件 B.不確定事件 C.不可能事件 D.隨機事件3.的倒數是()A.﹣ B.2 C.﹣2 D.4.在實數π,0,,﹣4中,最大的是()A.π B.0 C. D.﹣45.﹣的絕對值是()A.﹣ B. C.﹣2 D.26.如圖所示的幾何體的主視圖是()A. B. C. D.7.若二元一次方程組的解為則的值為()A.1 B.3 C. D.8.如圖,下列四個圖形是由已知的四個立體圖形展開得到的,則對應的標號是A. B. C. D.9.反比例函數y=(a>0,a為常數)和y=在第一象限內的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當點M在y=的圖象上運動時,以下結論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結論的個數是()A.0 B.1 C.2 D.310.如圖的幾何體是由一個正方體切去一個小正方體形成的,它的主視圖是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,轉盤中6個扇形的面積相等,任意轉動轉盤1次,當轉盤停止轉動時,指針指向的數小于5的概率為_____.12.如圖,經過點B(-2,0)的直線與直線相交于點A(-1,-2),則不等式的解集為.13.小明把一副含45°,30°的直角三角板如圖擺放,其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠α+∠β等于_____.14.方程3x(x-1)=2(x-1)的根是15.如圖,在平面直角坐標系中,點O為坐標原點,點P在第一象限,⊙P與x軸交于O,A兩點,點A的坐標為(6,0),⊙P的半徑為,則點P的坐標為_______.16.如圖,中,,則__________.三、解答題(共8題,共72分)17.(8分)解不等式組18.(8分)如圖,已知△ABC是等邊三角形,點D在AC邊上一點,連接BD,以BD為邊在AB的左側作等邊△DEB,連接AE,求證:AB平分∠EAC.19.(8分)解不等式組.20.(8分)4×100米拉力賽是學校運動會最精彩的項目之一.圖中的實線和虛線分別是初三?一班和初三?二班代表隊在比賽時運動員所跑的路程y(米)與所用時間x(秒)的函數圖象(假設每名運動員跑步速度不變,交接棒時間忽略不計).問題:(1)初三?二班跑得最快的是第接力棒的運動員;(2)發令后經過多長時間兩班運動員第一次并列?21.(8分)“食品安全”受到全社會的廣泛關注,濟南市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖.請你根據統計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為;(2)請補全條形統計圖;(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數;(4)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.22.(10分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.求證:四邊形ACDF是平行四邊形;當CF平分∠BCD時,寫出BC與CD的數量關系,并說明理由.23.(12分)為響應國家全民閱讀的號召,某社區鼓勵居民到社區閱覽室借閱讀書,并統計每年的借閱人數和圖書借閱總量(單位:本),該閱覽室在2014年圖書借閱總量是7500本,2016年圖書借閱總量是10800本.(1)求該社區的圖書借閱總量從2014年至2016年的年平均增長率;(2)已知2016年該社區居民借閱圖書人數有1350人,預計2017年達到1440人,如果2016年至2017年圖書借閱總量的增長率不低于2014年至2016年的年平均增長率,那么2017年的人均借閱量比2016年增長a%,求a的值至少是多少?24.太原雙塔寺又名永祚寺,是國家級文物保護單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標志性建筑之一,某校社會實踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標桿CD,這時地面上的點E,標桿的頂端點D,舍利塔的塔尖點B正好在同一直線上,測得EC=4米,將標桿CD向后平移到點C處,這時地面上的點F,標桿的頂端點H,舍利塔的塔尖點B正好在同一直線上(點F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG=6米,GC=53米.請你根據以上數據,計算舍利塔的高度AB.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】880億=88000000000=8.8×1010,

故選D.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.2、A【解析】根據數軸上某個數與原點的距離叫做這個數的絕對值的定義,由a是實數,得|a|≥0恒成立,因此,這一事件是必然事件.故選A.3、B【解析】

根據乘積是1的兩個數叫做互為倒數解答.【詳解】解:∵×1=1∴的倒數是1.故選B.【點睛】本題考查了倒數的定義,是基礎題,熟記概念是解題的關鍵.4、C【解析】

根據實數的大小比較即可得到答案.【詳解】解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案選C.【點睛】本題主要考查了實數的大小比較,解本題的要點在于統一根據二次根式的性質,把根號外的移到根號內,只需比較被開方數的大小.5、B【解析】

根據求絕對值的法則,直接計算即可解答.【詳解】,故選:B.【點睛】本題主要考查求絕對值的法則,掌握負數的絕對值等于它的相反數,是解題的關鍵.6、C【解析】

主視圖就是從正面看,看列數和每一列的個數.【詳解】解:由圖可知,主視圖如下故選C.【點睛】考核知識點:組合體的三視圖.7、D【解析】

先解方程組求出,再將代入式中,可得解.【詳解】解:,得,所以,因為所以.故選D.【點睛】本題考查二元一次方程組的解,解題的關鍵是觀察兩方程的系數,從而求出a-b的值,本題屬于基礎題型.8、B【解析】

根據常見幾何體的展開圖即可得.【詳解】由展開圖可知第一個圖形是②正方體的展開圖,第2個圖形是①圓柱體的展開圖,第3個圖形是③三棱柱的展開圖,第4個圖形是④四棱錐的展開圖,故選B【點睛】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關鍵.9、D【解析】

根據反比例函數的性質和比例系數的幾何意義逐項分析可得出解.【詳解】①由于A、B在同一反比例函數y=圖象上,由反比例系數的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會發生變化,正確;③連接OM,點A是MC的中點,則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點B一定是MD的中點.正確;故答案選D.考點:反比例系數的幾何意義.10、D【解析】試題分析:根據三視圖的法則可知B為俯視圖,D為主視圖,主視圖為一個正方形.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題解析:∵共6個數,小于5的有4個,∴P(小于5)==.故答案為.12、【解析】分析:不等式的解集就是在x下方,直線在直線上方時x的取值范圍.由圖象可知,此時.13、210°【解析】

根據三角形內角和定理得到∠B=45°,∠E=60°,根據三角形的外角的性質計算即可.【詳解】解:如圖:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案為:210°.【點睛】本題考查的是三角形的外角的性質、三角形內角和定理,掌握三角形的一個外角等于和它不相鄰的兩個內角的和是解題的關鍵.14、x1=1,x2=-.【解析】試題解析:3x(x-1)=2(x-1)3x(x-1)-2(x-1)=0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考點:解一元二次方程---因式分解法.15、(3,2).【解析】

過點P作PD⊥x軸于點D,連接OP,先由垂徑定理求出OD的長,再根據勾股定理求出PD的長,故可得出答案.【詳解】過點P作PD⊥x軸于點D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點睛】本題考查的是垂徑定理,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.16、17【解析】∵Rt△ABC中,∠C=90°,∴tanA=,∵,∴AC=8,∴AB==17,故答案為17.三、解答題(共8題,共72分)17、﹣1≤x<1.【解析】

分別求出不等式組中兩不等式的解集,找出兩解集的公共部分即可.【詳解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<1,則不等式組的解集為﹣1≤x<1.【點睛】此題考查了解一元一次不等式組,熟練掌握運算法則是解本題的關鍵.18、詳見解析【解析】

由等邊三角形的性質得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,證出∠ABE=∠CBD,證明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出結論.【詳解】證明:∵△ABC,△DEB都是等邊三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【點睛】本題考查了全等三角形的判定與性質,等邊三角形的性質等知識,熟練掌握等邊三角形的性質,證明三角形全等是解題的關鍵.19、x<﹣1.【解析】分析:按照解一元一次不等式組的一般步驟解答即可.詳解:,由①得x≤1,由②得x<﹣1,∴原不等式組的解集是x<﹣1.點睛:“熟練掌握一元一次不等式組的解法”是正確解答本題的關鍵.20、(1)1;(2)發令后第37秒兩班運動員在275米處第一次并列.【解析】

(1)直接根據圖象上點橫坐標可知道最快的是第1接力棒的運動員用了12秒跑完100米;(2)分別利用待定系數法把圖象相交的部分,一班,二班的直線解析式求出來后,聯立成方程組求交點坐標即可.【詳解】(1)從函數圖象上可看出初三?二班跑得最快的是第1接力棒的運動員用了12秒跑完100米;(2)設在圖象相交的部分,設一班的直線為y1=kx+b,把點(28,200),(40,300)代入得:解得:k=,b=﹣,即y1=x﹣,二班的為y2=k′x+b′,把點(25,200),(41,300),代入得:解得:k′=,b′=,即y2=x+聯立方程組,解得:,所以發令后第37秒兩班運動員在275米處第一次并列.【點睛】本題考查了利用一次函數的模型解決實際問題的能力和讀圖能力.要先根據題意列出函數關系式,再代數求值.解題的關鍵是要分析題意根據實際意義準確的列出解析式,再把對應值代入求解,并會根據圖示得出所需要的信息.要掌握利用函數解析式聯立成方程組求交點坐標的方法.21、(1)60,90°;(2)補圖見解析;(3)300;(4).【解析】分析:(1)根據了解很少的人數除以了解很少的人數所占的百分百求出抽查的總人數,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數;(2)用調查的總人數減去“基本了解”“了解很少”和“基本了解”的人數,求出了解的人數,從而補全統計圖;(3)用總人數乘以“了解”和“基本了解”程度的人數所占的比例,即可求出達到“了解”和“基本了解”程度的總人數;(4)根據題意列出表格,再根據概率公式即可得出答案.詳解:(1)60;90°.(2)補全的條形統計圖如圖所示.(3)對食品安全知識達到“了解”和“基本了解”的學生所占比例為,由樣本估計總體,該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數為.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情況一共12種,其中選中1個男生和1個女生的情況有8種,所以恰好選中1個男生和1個女生的概率是.點睛:本題考查了條形統計圖、扇形統計圖以及用列表法或樹狀圖法求概率,根據題意求出總人數是解題的關鍵;注意運用概率公式:概率=所求情況數與總情況數之比.22、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質,即可判定△FAE≌△CDE,即可得到CD=FA,再根據CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據E是AD的中點,可得AD=2CD,依據AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質以及平行四邊形的判定與性質,要證明兩直線平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論