




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省南平市市級名校2023-2024學年中考數學押題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,4張如圖1的長為a,寬為b(a>b)長方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿足()A.a= B.a=2b C.a=b D.a=3b2.如圖,以AD為直徑的半圓O經過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為()A. B. C. D.3.下列“數字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個4.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°5.已知空氣的單位體積質量是0.001239g/cm3,則用科學記數法表示該數為()A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm36.《孫子算經》是中國古代重要的數學著作,成書于約一千五百年前,其中有首歌謠:今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問竿長幾何?意即:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時立一根一尺五寸的小標桿,它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為()A.五丈 B.四丈五尺 C.一丈 D.五尺7.一元二次方程4x2﹣2x+=0的根的情況是()A.有兩個不相等的實數根 B.有兩個相等的實數根C.沒有實數根 D.無法判斷8.如圖是一次數學活動課制作的一個轉盤,盤面被等分成四個扇形區域,并分別標有數字-1,0,1,2.若轉動轉盤兩次,每次轉盤停止后記錄指針所指區域的數字(當指針恰好指在分界線上時,不記,重轉),則記錄的兩個數字都是正數的概率為()A. B. C. D.9.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.10.下列式子成立的有()個①﹣的倒數是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有兩個不等的實數根A.1 B.2 C.3 D.411.如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體()A.主視圖不變,左視圖不變B.左視圖改變,俯視圖改變C.主視圖改變,俯視圖改變D.俯視圖不變,左視圖改變12.如圖,矩形ABOC的頂點A的坐標為(﹣4,5),D是OB的中點,E是OC上的一點,當△ADE的周長最小時,點E的坐標是()A.(0,) B.(0,) C.(0,2) D.(0,)二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式___________14.寫出一個一次函數,使它的圖象經過第一、三、四象限:______.15.從,0,π,3.14,6這五個數中隨機抽取一個數,抽到有理數的概率是____.16.點P的坐標是(a,b),從-2,-1,0,1,2這五個數中任取一個數作為a的值,再從余下的四個數中任取一個數作為b的值,則點P(a,b)在平面直角坐標系中第二象限內的概率是.17.某個“清涼小屋”自動售貨機出售A、B、C三種飲料.A、B、C三種飲料的單價分別是2元/瓶、3元/瓶、5元/瓶.工作日期間,每天上貨量是固定的,且能全部售出,其中,A飲科的數量(單位:瓶)是B飲料數量的2倍,B飲料的數量(單位:瓶)是C飲料數量的2倍.某個周六,A、B、C三種飲料的上貨量分別比一個工作日的上貨量增加了50%、60%、50%,且全部售出.但是由于軟件bug,發生了一起錯單(即消費者按某種飲料一瓶的價格投幣,但是取得了另一種飲料1瓶),結果這個周六的銷售收入比一個工作日的銷售收入多了503元.則這個“清涼小屋”自動售貨機一個工作日的銷售收入是_____元.18.已知拋物線y=x2上一點A,以A為頂點作拋物線C:y=x2+bx+c,點B(2,yB)為拋物線C上一點,當點A在拋物線y=x2上任意移動時,則yB的取值范圍是_________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知反比例函數和一次函數的圖象相交于第一象限內的點A,且點A的橫坐標為1.過點A作AB⊥x軸于點B,△AOB的面積為1.求反比例函數和一次函數的解析式.若一次函數的圖象與x軸相交于點C,求∠ACO的度數.結合圖象直接寫出:當>>0時,x的取值范圍.20.(6分)如圖,在平面直角坐標系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).求直線與雙曲線的表達式;過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標.21.(6分)如圖所示,內接于圓O,于D;(1)如圖1,當AB為直徑,求證:;(2)如圖2,當AB為非直徑的弦,連接OB,則(1)的結論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點F,連接ED,且,若,,求CF的長度.22.(8分)某電視臺的一檔娛樂性節目中,在游戲PK環節,為了隨機分選游戲雙方的組員,主持人設計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.23.(8分)先化簡,再求值:,其中x=﹣1.24.(10分)如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內為原始森林保護區,在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達B處,測得C在點B的北偏西60°方向上.(1)MN是否穿過原始森林保護區,為什么?(參考數據:≈1.732)(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?25.(10分)如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的動點,PC∥AB,點M是OP中點.(1)求證:四邊形OBCP是平行四邊形;(2)填空:①當∠BOP=時,四邊形AOCP是菱形;②連接BP,當∠ABP=時,PC是⊙O的切線.26.(12分)如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;(3)當0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).27.(12分)如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側),C為頂點,直線y=x+m經過點A,與y軸交于點D.求線段AD的長;平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′.若新拋物線經過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應的函數表達式.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
從圖形可知空白部分的面積為S2是中間邊長為(a﹣b)的正方形面積與上下兩個直角邊為(a+b)和b的直角三角形的面積,再與左右兩個直角邊為a和b的直角三角形面積的總和,陰影部分的面積為S1是大正方形面積與空白部分面積之差,再由S2=2S1,便可得解.【詳解】由圖形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故選B.【點睛】本題主要考查了求陰影部分面積和因式分解,關鍵是正確列出陰影部分與空白部分的面積和正確進行因式分解.2、D【解析】
連接BD,BE,BO,EO,先根據B、E是半圓弧的三等分點求出圓心角∠BOD的度數,再利用弧長公式求出半圓的半徑R,再利用圓周角定理求出各邊長,通過轉化將陰影部分的面積轉化為S△ABC﹣S扇形BOE,然后分別求出面積相減即可得出答案.【詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的長為,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=故選:D.【點睛】本題主要考查弧長公式,扇形面積公式,圓周角定理等,掌握圓的相關性質是解題的關鍵.3、C【解析】
根據軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.4、D【解析】
如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【點睛】本題主要考查了平行線的性質以及角平分線的定義的運用,解題時注意:兩直線平行,同旁內角互補.解決問題的關鍵是作平行線.5、A【解析】試題分析:0.001219=1.219×10﹣1.故選A.考點:科學記數法—表示較小的數.6、B【解析】【分析】根據同一時刻物高與影長成正比可得出結論.【詳解】設竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴,解得x=45(尺),故選B.【點睛】本題考查了相似三角形的應用舉例,熟知同一時刻物髙與影長成正比是解答此題的關鍵.7、B【解析】
試題解析:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有兩個相等的實數根.故選B.考點:根的判別式.8、C【解析】
列表得,
1
2
0
-1
1
(1,1)
(1,2)
(1,0)
(1,-1)
2
(2,1)
(2,2)
(2,0)
(2,-1)
0
(0,1)
(0,2)
(0,0)
(0,-1)
-1
(-1,1)
(-1,2)
(-1,0)
(-1,-1)
由表格可知,總共有16種結果,兩個數都為正數的結果有4種,所以兩個數都為正數的概率為,故選C.考點:用列表法(或樹形圖法)求概率.9、D【解析】試題分析:該幾何體的左視圖是邊長分別為圓的半徑和直徑的矩形,俯視圖是邊長分別為圓的直徑和半徑的矩形,故答案選D.考點:D.10、B【解析】
根據倒數的定義,冪的乘方、二次根式的混合運算法則以及根的判別式進行判斷.【詳解】解:①﹣的倒數是﹣2,故正確;②(﹣2a2)3=﹣8a6,故錯誤;③(-)=﹣2,故錯誤;④因為△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有兩個不等的實數根,故正確.故選B.【點睛】考查了倒數的定義,冪的乘方、二次根式的混合運算法則以及根的判別式,屬于比較基礎的題目,熟記計算法則即可解答.11、A【解析】
分別得到將正方體①移走前后的三視圖,依此即可作出判斷.【詳解】將正方體①移走前的主視圖為:第一層有一個正方形,第二層有四個正方形,正方體①移走后的主視圖為:第一層有一個正方形,第二層有四個正方形,沒有改變。將正方體①移走前的左視圖為:第一層有一個正方形,第二層有兩個正方形,正方體①移走后的左視圖為:第一層有一個正方形,第二層有兩個正方形,沒有發生改變。將正方體①移走前的俯視圖為:第一層有四個正方形,第二層有兩個正方形,正方體①移走后的俯視圖為:第一層有四個正方形,第二層有兩個正方形,發生改變。故選A.【點睛】考查了三視圖,從幾何體的正面,左面,上面看到的平面圖形中正方形的列數以及每列正方形的個數是解決本題的關鍵.12、B【解析】解:作A關于y軸的對稱點A′,連接A′D交y軸于E,則此時,△ADE的周長最小.∵四邊形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐標為(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中點,∴D(﹣2,0).設直線DA′的解析式為y=kx+b,∴,∴,∴直線DA′的解析式為.當x=0時,y=,∴E(0,).故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
原式提取公因式,再利用完全平方公式分解即可.【詳解】原式=2x(y2+2y+1)=2x(y+1)2,故答案為2x(y+1)2【點睛】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.14、y=x﹣1(答案不唯一)【解析】一次函數圖象經過第一、三、四象限,則可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).15、【解析】分析:由題意可知,從,0,π,3.14,6這五個數中隨機抽取一個數,共有5種等可能結果,其中是有理數的有3種,由此即可得到所求概率了.詳解:∵從,0,π,3.14,6這五個數中隨機抽取一個數,共有5種等可能結果,其中有理數有0,3.14,6共3個,∴抽到有理數的概率是:.故答案為.點睛:知道“從,0,π,3.14,6這五個數中隨機抽取一個數,共有5種等可能結果”并能識別其中“0,3.14,6”是有理數是解答本題的關鍵.16、【解析】畫樹狀圖為:共有20種等可能的結果數,其中點P(a,b)在平面直角坐標系中第二象限內的結果數為4,所以點P(a,b)在平面直角坐標系中第二象限內的概率==.故答案為.17、950【解析】
設工作日期間C飲料數量為x瓶,則B飲料數量為2x瓶,A飲料數量為4x瓶,得到工作日期間一天的銷售收入為:8x+6x+5x=19x元,和周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,再結合題意得到10.1x﹣(5﹣3)=503,計算即可得到答案.【詳解】解:設工作日期間C飲料數量為x瓶,則B飲料數量為2x瓶,A飲料數量為4x瓶,工作日期間一天的銷售收入為:8x+6x+5x=19x元,周六C飲料數量為1.5x瓶,則B飲料數量為3.2x瓶,A飲料數量為6x瓶,周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,周六銷售收入與工作日期間一天銷售收入的差為:29.1x﹣19x=10.1x元,由于發生一起錯單,收入的差為503元,因此,503加減一瓶飲料的差價一定是10.1的整數倍,所以這起錯單發生在B、C飲料上(B、C一瓶的差價為2元),且是消費者付B飲料的錢,取走的是C飲料;于是有:10.1x﹣(5﹣3)=503解得:x=50工作日期間一天的銷售收入為:19×50=950元,故答案為:950.【點睛】本題考查一元一次方程的實際應用,解題的關鍵是由題意得到等量關系.18、ya≥1【解析】
設點A的坐標為(m,n),由題意可知n=m1,從而可知拋物線C為y=(x-m)1+n,化簡為y=x1-1mx+1m1,將x=1代入y=x1-1mx+1m1,利用二次函數的性質即可求出答案.【詳解】設點A的坐標為(m,n),m為全體實數,
由于點A在拋物線y=x1上,
∴n=m1,
由于以A為頂點的拋物線C為y=x1+bx+c,
∴拋物線C為y=(x-m)1+n
化簡為:y=x1-1mx+m1+n=x1-1mx+1m1,
∴令x=1,
∴ya=4-4m+1m1=1(m-1)1+1≥1,
∴ya≥1,
故答案為ya≥1【點睛】本題考查了二次函數的性質,解題的關鍵是根據題意求出ya=4-4m+1m1=1(m-1)1+1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=;y=x+1;(2)∠ACO=45°;(3)0<x<1.【解析】
(1)根據△AOB的面積可求AB,得A點坐標.從而易求兩個函數的解析式;(2)求出C點坐標,在△ABC中運用三角函數可求∠ACO的度數;(3)觀察第一象限內的圖形,反比例函數的圖象在一次函數的圖象的上面部分對應的x的值即為取值范圍.【詳解】(1)∵△AOB的面積為1,并且點A在第一象限,∴k=2,∴y=;∵點A的橫坐標為1,∴A(1,2).把A(1,2)代入y=ax+1得,a=1.∴y=x+1.(2)令y=0,0=x+1,∴x=?1,∴C(?1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由圖象可知,在第一象限,當y>y>0時,0<x<1.在第三象限,當y>y>0時,?1<x<0(舍去).【點睛】此題考查反比例函數與一次函數的交點問題,解題關鍵在于結合函數圖象進行解答.20、(1)直線的表達式為,雙曲線的表達方式為;(2)點P的坐標為或【解析】分析:(1)將點B(-1,4)代入直線和雙曲線解析式求出k和m的值即可;(2)根據直線解析式求得點A坐標,由S△ACP=AC?|yP|=4求得點P的縱坐標,繼而可得答案.詳解:(1)∵直線與雙曲線()都經過點B(-1,4),,,∴直線的表達式為,雙曲線的表達方式為.(2)由題意,得點C的坐標為C(-1,0),直線與x軸交于點A(3,0),,∵,,點P在雙曲線上,∴點P的坐標為或.點睛:本題主要考查反比例函數和一次函數的交點問題,熟練掌握待定系數法求函數解析式及三角形的面積是解題的關鍵.21、(1)見解析;(2)成立;(3)【解析】
(1)根據圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據三角形內角和定理求出即可;(2)根據圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長CG交AK于M,延長KO交⊙O于N,連接CN、AN,求出關于a的方程,再求出a即可.【詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據圓周角定理得:,∴,∴由三角形內角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長CG交AK于M,則,,∴,∴,延長KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點,∵O為KN的中點,∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設,,∴,,∵,∴,解得:,∴,∴.【點睛】本題考查了垂徑定理、解直角三角形、等腰三角形的性質、圓周角定理、勾股定理等知識點,能綜合運用知識點進行推理是解此題的關鍵,綜合性比較強,難度偏大.22、(1);(2).【解析】
(1)直接根據概率公式求解即可;(2)根據題意先畫出樹狀圖,得出所有情況數和甲、乙兩位嘉賓能分為同隊的結果數,再根據概率公式即可得出答案.【詳解】解:(1)∵共有三根細繩,且抽出每根細繩的可能性相同,∴甲嘉賓從中任意選擇一根細繩拉出,恰好抽出細繩AA1的概率是=;(2)畫樹狀圖:共有9種等可能的結果數,其中甲、乙兩位嘉賓能分為同隊的結果數為3種情況,則甲、乙兩位嘉賓能分為同隊的概率是.23、.【解析】試題分析:試題解析:原式===當x=時,原式=.考點:分式的化簡求值.24、(1)不會穿過森林保護區.理由見解析;(2)原計劃完成這項工程需要25天.【解析】試題分析:(1)要求MN是否穿過原始森林保護區,也就是求C到MN的距離.要構造直角三角形,再解直角三角形;(2)根據題意列方程求解.試題解析:(1)如圖,過C作CH⊥AB于H,設CH=x,由已知有∠EAC=45°,∠FBC=60°則∠CAH=45°,∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=∴HB===x,∵AH+HB=AB∴x+x=600解得x≈220(米)>200(米).∴MN不會穿過森林保護區.(2)設原計劃完成這項工程需要y天,則實際完成工程需要y-5根據題意得:=(1+25%)×,解得:y=25知:y=25的根.答:原計劃完成這項工程需要25天.25、(1)見解析;(2)①120°;②45°【解析】
(1)由AAS證明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出結論;
(2)①證出OA=OP=PA,得出△AOP是等邊三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;
②由切線的性質和平行線的性質得出∠BOP=90°,由等腰三角形的性質得出∠ABP=∠OPB=45°即可.【詳解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵點M是OP的中點,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圓O的直徑,∴OA=OB,∴PC=OB.又PC∥AB,∴四邊形OBCP是平行四邊形.(2)①∵四邊形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等邊三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案為120°;②∵PC是⊙O的切線,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案為45°.【點睛】本題是圓的綜合題目,考查了全等三角形的判定與性質、平行四邊形的判定、切線的性質、菱形的判定與性質、等邊三角形的判定與性質等知識;本題綜合性強,熟練掌握切線的性質和平行四邊形的判定是解題的關鍵.26、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標,利用待定系數法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標及對稱軸,可設出M點坐標,表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關于M點坐標的方程,可求得M點的坐標;(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設出E點坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學校管理質量經驗交流會上校長發言確保教學質量的穩步提高實現高考質量的新突破
- 故事代替道理《胃:你會不會吃飯》
- JAVA單元測試問題試題及答案
- 民宿研學旅行項目委托經營管理與服務細則
- 重組蛋白生物制藥技術授權與市場推廣合同
- 2025年中國白內障藥行業市場前景預測及投資價值評估分析報告
- 教育資源數據訪問授權協議
- 知識產權分成與版權運營收益補充協議
- 茶園種植與茶葉市場拓展服務合同
- 電梯安全使用培訓補充協議
- 青少年體重健康管理
- 23G409先張法預應力混凝土管樁
- [安徽]高速公路改擴建工程交通組織方案(155頁)
- 張齊華:《平均數》課件
- 部編版四年級語文下冊第五單元復習教案設計
- 《鐵路線路里程斷鏈設置和管理規定》
- 土工布檢測報告土工布產品屬性
- 21世紀音樂教育發展趨勢——問題與對策2004年音樂教育國際學術會議在上海音樂學院召開
- 導流明渠混凝土施工方案
- 中國字-中國人-歌詞
- 客戶信用等級評定表(超實用)
評論
0/150
提交評論