吉林省長春市市第十二中學高一數學理月考試題含解析_第1頁
吉林省長春市市第十二中學高一數學理月考試題含解析_第2頁
吉林省長春市市第十二中學高一數學理月考試題含解析_第3頁
吉林省長春市市第十二中學高一數學理月考試題含解析_第4頁
吉林省長春市市第十二中學高一數學理月考試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省長春市市第十二中學高一數學理月考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.設全集為,集合,則

參考答案:C2.已知函數(),則(

)A.f(x)的最大值為2

B.f(x)的最大值為3C.f(x)的最小值為2

D.f(x)的最小值為3參考答案:D3.如果一組數的平均數是,方差是,則另一組數的平均數和方差分別是

(

)A.

B.

C.

D.參考答案:C略4.已知α為第二象限角,,則cos2α=()A.﹣ B.﹣ C. D.參考答案:A【考點】GT:二倍角的余弦;GG:同角三角函數間的基本關系.【分析】由α為第二象限角,可知sinα>0,cosα<0,從而可求得sinα﹣cosα=,利用cos2α=﹣(sinα﹣cosα)(sinα+cosα)可求得cos2α【解答】解:∵sinα+cosα=,兩邊平方得:1+sin2α=,∴sin2α=﹣,①∴(sinα﹣cosα)2=1﹣sin2α=,∵α為第二象限角,∴sinα>0,cosα<0,∴sinα﹣cosα=,②∴cos2α=﹣(sinα﹣cosα)(sinα+cosα)=(﹣)×=﹣.故選A.5.函數在區間上的零點之和是()A. B. C. D.參考答案:B【分析】由結合正切函數的性質求出函數的零點即可得出答案。【詳解】由得,即所以,即又因為所以當時,時函數在區間上的零點之和是故選B【點睛】本題主要考查正切函數的性質,屬于簡單題。6.若A、B、C為三個集合,A∪B=B∩C,則一定有(

)A.AC

B.CA

C.A≠C

D.A=參考答案:A7.已知函數f(x)=|lgx|,0<a<b,且f(a)>f(b),則()A.ab>1 B.ab<1 C.ab=1 D.(a﹣1)(b﹣1)>0參考答案:B【考點】對數函數的圖象與性質.【分析】判定f(x)的單調性,得出a,b的范圍,再根據對數運算性質得出結論.【解答】解:f(x)=|lgx|=.∴f(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,∵0<a<b,且f(a)>f(b),∴0<a<b<1,或,(1)若0<a<b<1,則ab<1,(a﹣1)(b﹣1)>0;(2)若,則lga+lgb<0,即lgab<0,∴ab<1.綜上,故選B.8.函數的定義域是()A.

B.

C.

D.參考答案:D9.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列從P到Q的各對應關系不是映射的是()A.B.C.D.參考答案:C10.已知下列命題中:(1)若,且,則或,(2)若,則或(3)若不平行的兩個非零向量,滿足,則(4)若與平行,則其中真命題的個數是(

)A.

B.

C.

D.參考答案:C

解析:(1)是對的;(2)僅得;(3)

(4)平行時分和兩種,二、填空題:本大題共7小題,每小題4分,共28分11.已知的三個內角所對的邊分別是,且,則

.參考答案:212.已知點在第三象限,則角的終邊在第

象限.參考答案:二13.已知log54=a,log53=b,用a,b表示log2536=.參考答案:+b考點:對數的運算性質.專題:函數的性質及應用.分析:利用對數的運算性質和運算法則求解.解答:解:∵log54=a,log53=b,∴log2536=log56=log52+log53=+log53=.故答案為:+b.點評:本題考查對數的化簡、運算,是基礎題,解題時要注意對數的運算性質和運算法則的合理運用.14.在半徑為2的圓O內任取一點P,則點P到圓心O的距離大于1的概率為

.參考答案:因為的半徑為2,在內任取一點P,則點P到圓心O的距離大于1的事件為A,所以,,所以,故答案是.

15.的值是

.參考答案:1【考點】兩角和與差的正切函數.【分析】把45°拆成60°﹣15°,然后利用兩角差的正切求得答案.【解答】解:∵tan45°=tan(60°﹣15°)=.∴=.故答案為:1.16.在空間直角坐標系中,已知點,點M在y軸上,且M到A與到B的距離相等,則M的坐標是_____________。參考答案:17.如圖,函數y=2sin(+),x∈R,(其中0≤≤)的圖象與y軸交于點(0,1).設P是圖象上的最高點,M、N是圖象與x軸的交點,=__________.參考答案:;略三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.如圖,在四邊形中,,,,,,求四邊形繞旋轉一周所成幾何體的表面積及體積.參考答案:---------------------------------6分

---------------------12分19.設計一個水渠,其橫截面為等腰梯形(如圖所示),要求滿足條件AB+BC+CD=a(常數),∠ABC=120°,寫出橫截面的面積y與腰長x的關系式,并求它的定義域和值.參考答案:解:如圖所示,∵腰長AB=x,∠ABC=120°,∴高h=xcos30°=x;∴上底BC=a﹣2x(0<x<),下底AD=BC+2?xsin30°=(a﹣2x)+2x?=a﹣x;∴橫截面的面積為y=?x=﹣x2+ax(0<x<);∵0<x<,y=(﹣x2+ax),∴當x=時,y取得最大值ymax=a2;∴函數y的值域是(0,a2],定義域是(0,).考點:函數解析式的求解及常用方法;函數的定義域及其求法.專題:應用題;函數的性質及應用.分析:畫出圖形,結合圖形,求出高和上底、下底的長,寫出橫截面的面積y的解析式,求出它的定義域和值域.解答:解:如圖所示,∵腰長AB=x,∠ABC=120°,∴高h=xcos30°=x;∴上底BC=a﹣2x(0<x<),下底AD=BC+2?xsin30°=(a﹣2x)+2x?=a﹣x;∴橫截面的面積為y=?x=﹣x2+ax(0<x<);∵0<x<,y=(﹣x2+ax),∴當x=時,y取得最大值ymax=a2;∴函數y的值域是(0,a2],定義域是(0,).點評:本題考查了求函數的解析式、定義域和值域的問題,解題時應認真分析題意,建立函數的解析式,求出函數的定義域和值域,是綜合題.20.已知函數.(1)若a=2,求函數在區間[0,1]上的最小值.(2)若函數在區間[0,1]上的最大值是2,求實數a的值.參考答案:(1)0.(2)或.∵,∴,對稱軸為直線,∴在區間上的最小值是,解:配方,得,∴函數的圖象開口向下的拋物線,關于直線對稱.(1)當,即時,的最大值為,解之得,或,經檢驗不符合題意.(2)當時,即時,函數在區間中上是增函數,∴的最大值為,解之得.()當時,即時,函數在區間中上是減函數,∴的最大值為,解之得,綜上所述,得當區間上的最大值為時,的值為或.21.設Sn是公差不為0的等差數列{an}的前n項和,且S1,S2,S4成等比數列,a5=9.(1)求數列{an}的通項公式;(2)證明:++…+<(n∈N*).參考答案:【考點】數列的求和;等差數列的通項公式.【分析】(1)由等比中項可知及等差數列通項公式,即可求得{an}的首項和公差,即可寫出數列{an}的通項公式;(2)根據等差數列的前n項和公式,當n=1,,顯然成立,當n≥2,采用放縮法及裂項法即可證明++…+=<.【解答】解:(1)由題意知.設{an}的公差為d,則,…解得:.∴an=1+2(n﹣1)=2n﹣1,故數列{an}的通項公式是an=2n﹣1.…(2)證明:由(1)知…當n=1時,左邊=,故原不等式顯然成立.…當n≥2時,因為,∴,=,=,=,即.…綜上所述,.…22.計算下列各式:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論