




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆四川省宜賓市六中高三第三次模擬考試數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,,的零點分別為,,,則()A. B.C. D.2.已知平面向量,,,則實數x的值等于()A.6 B.1 C. D.3.tan570°=()A. B.- C. D.4.設復數滿足為虛數單位),則()A. B. C. D.5.已知m,n是兩條不同的直線,,是兩個不同的平面,給出四個命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④6.下列函數中,值域為R且為奇函數的是()A. B. C. D.7.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.8.已知向量與的夾角為,,,則()A. B.0 C.0或 D.9.大衍數列,米源于我國古代文獻《乾坤譜》中對易傳“大衍之數五十”的推論,主要用于解釋我國傳統文化中的太極衍生原理,數列中的每一項,都代表太極衍生過程中,曾經經歷過的兩儀數量總和.已知該數列前10項是0,2,4,8,12,18,24,32,40,50,…,則大衍數列中奇數項的通項公式為()A. B. C. D.10.已知函數是奇函數,且,若對,恒成立,則的取值范圍是()A. B. C. D.11.復數為純虛數,則()A.i B.﹣2i C.2i D.﹣i12.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與圓心為的圓相交于兩點,且,則實數的值為_________.14.在四棱錐中,是邊長為的正三角形,為矩形,,.若四棱錐的頂點均在球的球面上,則球的表面積為_____.15.兩光滑的曲線相切,那么它們在公共點處的切線方向相同.如圖所示,一列圓(an>0,rn>0,n=1,2…)逐個外切,且均與曲線y=x2相切,若r1=1,則a1=___,rn=______16.已知曲線,點,在曲線上,且以為直徑的圓的方程是.則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.18.(12分)已知,均為給定的大于1的自然數,設集合,.(Ⅰ)當,時,用列舉法表示集合;(Ⅱ)當時,,且集合滿足下列條件:①對任意,;②.證明:(ⅰ)若,則(集合為集合在集合中的補集);(ⅱ)為一個定值(不必求出此定值);(Ⅲ)設,,,其中,,若,則.19.(12分)在四棱錐的底面是菱形,底面,,分別是的中點,.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點的位置;若不存在,說明理由.20.(12分)已知數列的前項和為,且滿足.(1)求數列的通項公式;(2)若,,且數列前項和為,求的取值范圍.21.(12分)如圖,平面四邊形中,,是上的一點,是的中點,以為折痕把折起,使點到達點的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.22.(10分)已知函數.(1)若在處取得極值,求的值;(2)求在區間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
轉化函數,,的零點為與,,的交點,數形結合,即得解.【詳解】函數,,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數形結合法研究函數的零點,考查了學生轉化劃歸,數形結合的能力,屬于中檔題.2、A【解析】
根據向量平行的坐標表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標運算,屬于容易題.3、A【解析】
直接利用誘導公式化簡求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【點睛】本題考查三角函數的恒等變換及化簡求值,主要考查誘導公式的應用,屬于基礎題.4、B【解析】
易得,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數的乘法、除法運算,考查學生的基本計算能力,是一道容易題.5、D【解析】
根據面面垂直的判定定理可判斷①;根據空間面面平行的判定定理可判斷②;根據線面平行的判定定理可判斷③;根據面面垂直的判定定理可判斷④.【詳解】對于①,若,,,,兩平面相交,但不一定垂直,故①錯誤;對于②,若,,則,故②正確;對于③,若,,,當,則與不平行,故③錯誤;對于④,若,,,則,故④正確;故選:D【點睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎題.6、C【解析】
依次判斷函數的值域和奇偶性得到答案.【詳解】A.,值域為,非奇非偶函數,排除;B.,值域為,奇函數,排除;C.,值域為,奇函數,滿足;D.,值域為,非奇非偶函數,排除;故選:.【點睛】本題考查了函數的值域和奇偶性,意在考查學生對于函數知識的綜合應用.7、B【解析】
選B.考點:圓心坐標8、B【解析】
由數量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.9、B【解析】
直接代入檢驗,排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.【點睛】本題考查由數列的項選擇通項公式,解題時可代入檢驗,利用排除法求解.10、A【解析】
先根據函數奇偶性求得,利用導數判斷函數單調性,利用函數單調性求解不等式即可.【詳解】因為函數是奇函數,所以函數是偶函數.,即,又,所以,.函數的定義域為,所以,則函數在上為單調遞增函數.又在上,,所以為偶函數,且在上單調遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.【點睛】本題考查利用函數單調性求解不等式,根據方程組法求函數解析式,利用導數判斷函數單調性,屬壓軸題.11、B【解析】
復數為純虛數,則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數,∴,解得..故選:.【點睛】本題考查復數的分類,屬于基礎題.12、D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數在解三角形中的具體應用,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13、0或6【解析】
計算得到圓心,半徑,根據得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點睛】本題考查了根據直線和圓的位置關系求參數,意在考查學生的計算能力和轉化能力。14、【解析】
做中點,的中點,連接,由已知條件可求出,運用余弦定理可求,從而在平面中建立坐標系,則以及的外接圓圓心為和長方形的外接圓圓心為在該平面坐標系的坐標可求,通過球心滿足,即可求出的坐標,從而可求球的半徑,進而能求出球的表面積.【詳解】解:如圖做中點,的中點,連接,由題意知,則設的外接圓圓心為,則在直線上且設長方形的外接圓圓心為,則在上且.設外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標原點,以所在直線為軸,以過點垂直于軸的直線為軸,如圖建立坐標系,由題意知,在平面中且設,則,因為,所以解得.則所以球的表面積為.故答案為:.【點睛】本題考查了幾何體外接球的問題,考查了球的表面積.關于幾何體的外接球的做題思路有:一是通過將幾何體補充到長方體中,將幾何體的外接球等同于長方體的外接球,求出體對角線即為直徑,但這種方法適用性較差;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設半徑列方程求解;三是通過空間、平面坐標系進行求解.15、【解析】
第一空:將圓與聯立,利用計算即可;第二空:找到兩外切的圓的圓心與半徑的關系,再將與聯立,得到,與結合可得為等差數列,進而可得.【詳解】當r1=1時,圓,與聯立消去得,則,解得;由圖可知當時,①,將與聯立消去得,則,整理得,代入①得,整理得,則.故答案為:;.【點睛】本題是拋物線與圓的關系背景下的數列題,關鍵是找到圓心和半徑的關系,建立遞推式,由遞推式求通項公式,綜合性較強,是一道難度較大的題目.16、【解析】
設所在直線方程為設?點坐標分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯立直線與的方程,由,利用弦長公式即可求解.【詳解】因為是圓的直徑,必過圓心點,設所在直線方程為設?點坐標分別為,,都在上,故兩式相減,可得(因為是的中點),即聯立直線與的方程:又,即,即又因為,則有即∴.故答案為:【點睛】本題考查了直線與圓錐曲線的位置關系、弦長公式,考查了學生的計算能力,綜合性比較強,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(Ⅰ)證明:過點作于點,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點是的中點,連結,則∴平面∴∥,∴四邊形是矩形設,得:,又∵,∴,從而,過作于點,則∴是與平面所成角∴,∴與平面所成角的正弦值為考點:面面垂直的性質定理;線面平行的判定定理;線面垂直的性質定理;直線與平面所成的角.點評:本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的常考題型,較難.本題也可以用向量法來做:用向量法解題的關鍵是;首先正確的建立空間直角坐標系,正確求解平面的一個法向量.注意計算要仔細、認真.≌18、(Ⅰ);(Ⅱ)(ⅰ)詳見解析.(ⅱ)詳見解析.(Ⅲ)詳見解析.【解析】
(Ⅰ)當,時,,,,,,.即可得出.(Ⅱ)(i)當時,,2,3,,,又,,,,,,必然有,否則得出矛盾.(ii)由.可得.又,即可得出為定值.(iii)由設,,,,其中,,,2,,.,可得,通過求和即可證明結論.【詳解】(Ⅰ)解:當,時,,,,,..(Ⅱ)證明:(i)當時,,2,3,,,又,,,,,,必然有,否則,而,與已知對任意,矛盾.因此有.(ii)..,為定值.(iii)由設,,,,其中,,,2,,.,..【點睛】本題主要考查等差數列與等比數列的通項公式求和公式,考查了推理能力與計算能力,屬于難題.19、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】
(Ⅰ)由題意結合幾何關系可證得平面,據此證明題中的結論即可;(Ⅱ)建立空間直角坐標系,求得直線的方向向量與平面的一個法向量,然后求解線面角的正弦值即可;(Ⅲ)假設滿足題意的點存在,設,由直線與的方向向量得到關于的方程,解方程即可確定點F的位置.【詳解】(Ⅰ)由菱形的性質可得:,結合三角形中位線的性質可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結合菱形的性質易知,,,以點O為坐標原點,建立如圖所示的空間直角坐標系,則:,設平面的一個法向量為,則:,據此可得平面的一個法向量為,而,設直線與平面所成角為,則.(Ⅲ)由題意可得:,假設滿足題意的點存在,設,,據此可得:,即:,從而點F的坐標為,據此可得:,,結合題意有:,解得:.故點F為中點時滿足題意.【點睛】本題主要考查線面垂直的判定定理與性質定理,線面角的向量求法,立體幾何中的探索性問題等知識,意在考查學生的轉化能力和計算求解能力.20、(1)(2)【解析】
(1)由,可求,然后由時,可得,根據等比數列的通項可求(2)由,而,利用裂項相消法可求.【詳解】(1)當時,,解得,當時,①②②①得,即,數列是以2為首項,2為公比的等比數列,;(2)∴,∴,,.【點睛】本題考查遞推公式在數列的通項求解中的應用,等比數列的通項公式、裂項求和方法,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.21、(1)見解析;(2)【解析】
(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數據可證得為等邊三角形,又由于是的中點,所以,從而可證得結論;(2)由于在中,,而平面平面,所以點在平面的投影恰好為的中點,所以如圖建立空間直角坐標系,利用空間向量求解.【詳解】(1)由,所以平面四邊形為直角梯形,設,因為.所以在中,,則,又,所以,由,所以為等邊三角形,又是的中點,所以,又平面,則有平面,而平面,故平面平面.(2)解法一:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,以為坐標原點,方向為軸方向,建立如圖所示的空間直角坐標系,則,,設平面的法向量,由得取,則設直線與平面所成角大小為,則,故直線與平面所成角的正弦值為.解法二:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,過作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,,所以,設到平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CAOE 26-2021海洋生態本底調查與評價規范
- 西門子筆試題java面試題及答案
- 白柵欄考試題及答案
- sshm面試題及答案
- 護理競賽考試題庫及答案
- 地球文明考試題及答案
- 公考面試題型套路及答案
- 人生重在反思班會課件
- 食管賁門黏膜撕裂綜合征的臨床護理
- T/CADBM 62-2022多元鎂輕質無機板
- 【MOOC】頸肩腰腿痛中醫防治-暨南大學 中國大學慕課MOOC答案
- 零售連鎖店標準化運營手冊
- 三年級語文下冊 期末復習非連續文本閱讀專項訓練(五)(含答案)(部編版)
- 教育革新:2024版《認識交通標志》課件
- 外架拆除合同模板
- 起重裝卸機械操作工(初級工)理論考試復習題庫(含答案)
- 專題16-家庭與婚姻-2023年高考政治復習課件(新教材新高考)
- DB34T 1709-2020 亞臨界及以上電站鍋爐外部檢驗技術導則
- 議論文閱讀 專項訓練-2025年中考語文復習突破(江蘇專用)(解析版)
- 中國艾滋病診療指南(2024版)解讀
- DL∕T 5161.14-2018 電氣裝置安裝工程質量檢驗及評定規程 第14部分:起重機電氣裝置施工質量檢驗
評論
0/150
提交評論