2023-2024學年江蘇省南通市海安縣海安高級中學高考適應性考試數學試卷含解析_第1頁
2023-2024學年江蘇省南通市海安縣海安高級中學高考適應性考試數學試卷含解析_第2頁
2023-2024學年江蘇省南通市海安縣海安高級中學高考適應性考試數學試卷含解析_第3頁
2023-2024學年江蘇省南通市海安縣海安高級中學高考適應性考試數學試卷含解析_第4頁
2023-2024學年江蘇省南通市海安縣海安高級中學高考適應性考試數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省南通市海安縣海安高級中學高考適應性考試數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.2.元代數學家朱世杰的數學名著《算術啟蒙》是中國古代代數學的通論,其中關于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,,則輸出的()A.3 B.4 C.5 D.63.設,是空間兩條不同的直線,,是空間兩個不同的平面,給出下列四個命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④4.已知函數,則在上不單調的一個充分不必要條件可以是()A. B. C.或 D.5.已知復數,為的共軛復數,則()A. B. C. D.6.“是函數在區間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.已知定義在上的函數,,,,則,,的大小關系為()A. B. C. D.8.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.9.已知是過拋物線焦點的弦,是原點,則()A.-2 B.-4 C.3 D.-310.已知為等比數列,,,則()A.9 B.-9 C. D.11.復數為純虛數,則()A.i B.﹣2i C.2i D.﹣i12.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機變量服從正態分布,,則__________.14.已知角的終邊過點,則______.15.在直角坐標系中,某等腰直角三角形的兩個頂點坐標分別為,函數的圖象經過該三角形的三個頂點,則的解析式為___________.16.正四面體的一個頂點是圓柱上底面的圓心,另外三個頂點圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,圓的參數方程為:(為參數),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,且長度單位相同.(1)求圓的極坐標方程;(2)若直線:(為參數)被圓截得的弦長為,求直線的傾斜角.18.(12分)已知是等腰直角三角形,.分別為的中點,沿將折起,得到如圖所示的四棱錐.(Ⅰ)求證:平面平面.(Ⅱ)當三棱錐的體積取最大值時,求平面與平面所成角的正弦值.19.(12分)已知函數(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數的取值范圍;(Ⅲ)若數列的前項和,,求證:數列的前項和.20.(12分)在平面直角坐標系中,已知拋物線C:()的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點,交該拋物線的準線于D,E兩點.(1)求拋物線C的方程;(2)若F在線段上,P是的中點,證明:.21.(12分)已知的內角、、的對邊分別為、、,滿足.有三個條件:①;②;③.其中三個條件中僅有兩個正確,請選出正確的條件完成下面兩個問題:(1)求;(2)設為邊上一點,且,求的面積.22.(10分)已知數列滿足且(1)求數列的通項公式;(2)求數列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

先計算出總的基本事件的個數,再計算出兩張都沒獲獎的個數,根據古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數學建模、數學計算能力,屬于基礎題.2、B【解析】分析:根據流程圖中的可知,每次循環的值應是一個等比數列,公比為;根據流程圖中的可知,每次循環的值應是一個等比數列,公比為,根據每次循環得到的的值的大小決定循環的次數即可.詳解:記執行第次循環時,的值記為有,則有;記執行第次循環時,的值記為有,則有.令,則有,故,故選B.點睛:本題為算法中的循環結構和數列通項的綜合,屬于中檔題,解題時注意流程圖中蘊含的數列關系(比如相鄰項滿足等比數列、等差數列的定義,是否是求數列的前和、前項積等).3、C【解析】

根據線面平行或垂直的有關定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯②:因為,,所以或,因為,所以,故②對③:或,故③錯④:如圖因為,,在內過點作直線的垂線,則直線,又因為,設經過和相交的平面與交于直線,則又,所以因為,,所以,所以,故④對.故選:C【點睛】考查線面平行或垂直的判斷,基礎題.4、D【解析】

先求函數在上不單調的充要條件,即在上有解,即可得出結論.【詳解】,若在上不單調,令,則函數對稱軸方程為在區間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數的函數的單調性及充分不必要條件,要注意二次函數零點的求法,屬于中檔題.5、C【解析】

求出,直接由復數的代數形式的乘除運算化簡復數.【詳解】.故選:C【點睛】本題考查復數的代數形式的四則運算,共軛復數,屬于基礎題.6、C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.7、D【解析】

先判斷函數在時的單調性,可以判斷出函數是奇函數,利用奇函數的性質可以得到,比較三個數的大小,然后根據函數在時的單調性,比較出三個數的大小.【詳解】當時,,函數在時,是增函數.因為,所以函數是奇函數,所以有,因為,函數在時,是增函數,所以,故本題選D.【點睛】本題考查了利用函數的單調性判斷函數值大小問題,判斷出函數的奇偶性、單調性是解題的關鍵.8、D【解析】

先根據向量坐標運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標運算,引入新定義,屬于簡單題目.9、D【解析】

設,,設:,聯立方程得到,計算得到答案.【詳解】設,,故.易知直線斜率不為,設:,聯立方程,得到,故,故.故選:.【點睛】本題考查了拋物線中的向量的數量積,設直線為可以簡化運算,是解題的關鍵.10、C【解析】

根據等比數列的下標和性質可求出,便可得出等比數列的公比,再根據等比數列的性質即可求出.【詳解】∵,∴,又,可解得或設等比數列的公比為,則當時,,∴;當時,,∴.故選:C.【點睛】本題主要考查等比數列的性質應用,意在考查學生的數學運算能力,屬于基礎題.11、B【解析】

復數為純虛數,則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數,∴,解得..故選:.【點睛】本題考查復數的分類,屬于基礎題.12、B【解析】

利用充分必要條件的定義可判斷兩個條件之間的關系.【詳解】若,則,故或,當時,直線,直線,此時兩條直線平行;當時,直線,直線,此時兩條直線平行.所以當時,推不出,故“”是“”的不充分條件,當時,可以推出,故“”是“”的必要條件,故選:B.【點睛】本題考查兩條直線的位置關系以及必要不充分條件的判斷,前者應根據系數關系來考慮,后者依據兩個條件之間的推出關系,本題屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、0.22.【解析】

正態曲線關于x=μ對稱,根據對稱性以及概率和為1求解即可。【詳解】【點睛】本題考查正態分布曲線的特點及曲線所表示的意義,是一個基礎題.14、【解析】

由題意利用任意角的三角函數的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【點睛】本題主要考查任意角的三角函數的定義,兩角和差正弦公式,屬于基礎題.15、【解析】

結合題意先畫出直角坐標系,點出所有可能組成等腰直角三角形的點,采用排除法最終可確定為點,再由函數性質進一步求解參數即可【詳解】等腰直角三角形的第三個頂點可能的位置如下圖中的點,其中點與已有的兩個頂點橫坐標重復,舍去;若為點則點與點的中間位置的點的縱坐標必然大于或小于,不可能為,因此點也舍去,只有點滿足題意.此時點為最大值點,所以,又,則,所以點,之間的圖像單調,將,代入的表達式有由知,因此.故答案為:【點睛】本題考查由三角函數圖像求解解析式,數形結合思想,屬于中檔題16、【解析】

設正四面體的棱長為,求出底面外接圓的半徑與高,代入體積公式求解.【詳解】解:設正四面體的棱長為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【點睛】本題主要考查多面體與旋轉體體積的求法,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】

(1)消去參數可得圓的直角坐標方程,再根據,,即可得極坐標方程;(2)寫出直線的極坐標方程為,代入圓的極坐標方程,根據極坐標的意義列出等式解出即可.【詳解】(1)圓:,消去參數得:,即:,∵,,.∴,.(2)∵直線:的極坐標方程為,當時.即:,∴或.∴或,∴直線的傾斜角為或.【點睛】本題主要考查了參數方程化為普通方程,直角坐標方程化為極坐標方程以及極坐標的幾何意義,屬于中檔題.18、(Ⅰ)見解析.(Ⅱ).【解析】

(I)證明平面得出平面,根據面面垂直的判定定理得到結論;(II)當平面時,棱錐體積最大,建立空間坐標系,計算兩平面的法向量,計算法向量的夾角得出答案.【詳解】(I)證明:分別為的中點,,又平面平面,又平面平面平面(II),為定值當平面時,三棱錐的體積取最大值以為原點,以為坐標軸建立空間直角坐標系則,設平面的法向量為,則即,令可得平面是平面的一個法向量平面與平面所成角的正弦值為【點睛】本題考查了面面垂直的判定,二面角的計算,關鍵是能夠根據體積的最值確定垂直關系,從而可以建立起空間直角坐標系,利用空間向量法求得二面角,屬于中檔題.19、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導后討論當時和時的單調性證明,求出實數的取值范圍先求出、的通項公式,利用當時,得,下面證明:解析:(Ⅰ)因為,所以,,切點為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當且僅當取等號).故在上為增函數.①當時,,故在上為增函數,所以恒成立,故符合題意;②當時,由于,,根據零點存在定理,必存在,使得,由于在上為增函數,故當時,,故在上為減函數,所以當時,,故在上不恒成立,所以不符合題意.綜上所述,實數的取值范圍為(III)證明:由由(Ⅱ)知當時,,故當時,,故,故.下面證明:因為而,所以,,即:點睛:本題考查了利用導數的幾何意義求出參數及證明不等式成立,借助第二問的證明過程,利用導數的單調性證明數列的不等式,在求解的過程中還要求出數列的和,計算較為復雜,本題屬于難題.20、(1);(2)見解析【解析】

(1)根據拋物線的焦點在直線上,可求得的值,從而求得拋物線的方程;(2)法一:設直線,的方程分別為和且,,,可得,,,的坐標,進而可得直線的方程,根據在直線上,可得,再分別求得,,即可得證;法二:設,,則,根據直線的斜率不為0,設出直線的方程為,聯立直線和拋物線的方程,結合韋達定理,分別求出,,化簡,即可得證.【詳解】(1)拋物線C的焦點坐標為,且該點在直線上,所以,解得,故所求拋物線C的方程為(2)法一:由點F在線段上,可設直線,的方程分別為和且,,,則,,,.∴直線的方程為,即.又點在線段上,∴.∵P是的中點,∴∴,.由于,不重合,所以法二:設,,則當直線的斜率為0時,不符合題意,故可設直線的方程為聯立直線和拋物線的方程,得又,為該方程兩根,所以,,,.,由于,不重合,所以【點睛】本題考查拋物線的標準方程,考查拋物線的定義,考查直線與拋物線的位置關系,屬于中檔題.21、(1);(2).【解析】

(1)先求出角,進而可得出,則①②中有且只有一個正確,③正確,然后分①③正確和②③正確兩種情況討論,結合三角形的面積公式和余弦定理可求得的值;(2)計算出和,計算出,可得出,進而可求得的面積.【詳解】(1)因為,所以,得,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論