




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省鎮江市五校中考試題猜想數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.浙江省陸域面積為101800平方千米。數據101800用科學記數法表示為()A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×1062.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.213.如圖,在?ABCD中,AB=2,BC=1.以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是()A. B.1 C. D.4.(2017?鄂州)如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點,且∠BAE=45°.若CD=4,則△ABE的面積為()A.127B.247C.485.某人想沿著梯子爬上高4米的房頂,梯子的傾斜角(梯子與地面的夾角)不能大于60°A.8米 B.83米 C.8336.如圖,O為直線AB上一點,OE平分∠BOC,OD⊥OE于點O,若∠BOC=80°,則∠AOD的度數是()A.70° B.50° C.40° D.35°7.在剛過去的2017年,我國整體經濟實力躍上了一個新臺階,城鎮新增就業1351萬人,數據“1351萬”用科學記數法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×1088.在學校演講比賽中,10名選手的成績折線統計圖如圖所示,則下列說法正確的是()A.最高分90 B.眾數是5 C.中位數是90 D.平均分為87.59.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°10.等腰三角形兩邊長分別是2cm和5cm,則這個三角形周長是()A.9cmB.12cmC.9cm或12cmD.14cm二、填空題(本大題共6個小題,每小題3分,共18分)11.若一段弧的半徑為24,所對圓心角為60°,則這段弧長為____.12.不等式的解集是________________13.如圖,菱形OABC的一邊OA在x軸的負半軸上,O是坐標原點,tan∠AOC=,反比例函數y=的圖象經過點C,與AB交于點D,若△COD的面積為20,則k的值等于_____________.14.一次函數y=kx+b的圖像如圖所示,則當kx+b>0時,x的取值范圍為___________.15.關于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數根,則m的取值范圍是_____.16.如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當正方形CDEF的邊長為4時,陰影部分的面積為_____.三、解答題(共8題,共72分)17.(8分)“垃圾不落地,城市更美麗”.某中學為了了解七年級學生對這一倡議的落實情況,學校安排政教處在七年級學生中隨機抽取了部分學生,并針對學生“是否隨手丟垃圾”這一情況進行了問卷調查,統計結果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經常隨手丟垃圾三項.要求每位被調查的學生必須從以上三項中選一項且只能選一項.現將調查結果繪制成以下來不辜負不完整的統計圖.請你根據以上信息,解答下列問題:(1)補全上面的條形統計圖和扇形統計圖;(2)所抽取學生“是否隨手丟垃圾”情況的眾數是;(3)若該校七年級共有1500名學生,請你估計該年級學生中“經常隨手丟垃圾”的學生約有多少人?談談你的看法?18.(8分)((1)計算:;(2)先化簡,再求值:,其中a=.19.(8分)如圖,已知拋物線與軸交于兩點(A點在B點的左邊),與軸交于點.(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點在拋物線上,點在拋物線的對稱軸上,若以為邊,以點、、、Q為頂點的四邊形是平行四邊形,求點的坐標;(3)如圖2,過點作直線的平行線交拋物線于另一點,交軸于點,若﹕=1﹕1.求的值.20.(8分)先化簡,再求值:(1+)÷,其中x=+1.21.(8分)綜合與實踐﹣猜想、證明與拓廣問題情境:數學課上同學們探究正方形邊上的動點引發的有關問題,如圖1,正方形ABCD中,點E是BC邊上的一點,點D關于直線AE的對稱點為點F,直線DF交AB于點H,直線FB與直線AE交于點G,連接DG,CG.猜想證明(1)當圖1中的點E與點B重合時得到圖2,此時點G也與點B重合,點H與點A重合.同學們發現線段GF與GD有確定的數量關系和位置關系,其結論為:;(2)希望小組的同學發現,圖1中的點E在邊BC上運動時,(1)中結論始終成立,為證明這兩個結論,同學們展開了討論:小敏:根據軸對稱的性質,很容易得到“GF與GD的數量關系”…小麗:連接AF,圖中出現新的等腰三角形,如△AFB,…小凱:不妨設圖中不斷變化的角∠BAF的度數為n,并設法用n表示圖中的一些角,可證明結論.請你參考同學們的思路,完成證明;(3)創新小組的同學在圖1中,發現線段CG∥DF,請你說明理由;聯系拓廣:(4)如圖3若將題中的“正方形ABCD”變為“菱形ABCD“,∠ABC=α,其余條件不變,請探究∠DFG的度數,并直接寫出結果(用含α的式子表示).22.(10分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,過B點的切線交OP于點C.求證:∠CBP=∠ADB.若OA=2,AB=1,求線段BP的長.23.(12分)已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯結AE并延長,交邊BC于點F.(1)求∠EAD的余切值;(2)求的值.24.如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點,作DE⊥AC,交AB的延長線于點F,連接DA.求證:EF為半圓O的切線;若DA=DF=6,求陰影區域的面積.(結果保留根號和π)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】.故選B.點睛:在把一個絕對值較大的數用科學記數法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數的整數位數少1(也可以通過小數點移位來確定).2、A【解析】
根據已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
則△ABC的面積是:×AD×BC=×3×(3+4)=.
故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.3、B【解析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.4、D【解析】解:如圖取CD的中點F,連接BF延長BF交AD的延長線于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易證△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由題意AD=DC=4,設BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,設AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=207,∴S△ABE=12×5×207點睛:本題考查直角梯形的性質、全等三角形的判定和性質、角平分線的性質定理、勾股定理、二元二次方程組等知識,解題的關鍵是學會添加常用輔助線,學會利用參數,構建方程解決問題,屬于中考壓軸題.5、C【解析】此題考查的是解直角三角形如圖:AC=4,AC⊥BC,∵梯子的傾斜角(梯子與地面的夾角)不能>60°.∴∠ABC≤60°,最大角為60°.即梯子的長至少為83故選C.6、B【解析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數.詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點睛:本題考查了角平分線的定義:從一個角的頂點出發,把這個角分成相等的兩個角的射線叫做這個角的平分線.性質:若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.7、B【解析】
根據科學記數法進行解答.【詳解】1315萬即13510000,用科學記數法表示為1.351×107.故選擇B.【點睛】本題主要考查科學記數法,科學記數法表示數的標準形式是a×10n(1≤│a│<10且n為整數).8、C【解析】試題分析:根據折線統計圖可得:最高分為95,眾數為90;中位數90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.9、B【解析】
試題分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B10、B【解析】當腰長是2cm時,因為2+2<5,不符合三角形的三邊關系,排除;當腰長是5cm時,因為5+5>2,符合三角形三邊關系,此時周長是12cm.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、8π【解析】試題分析:∵弧的半徑為24,所對圓心角為60°,∴弧長為l==8π.故答案為8π.【考點】弧長的計算.12、【解析】
首先去分母進而解出不等式即可.【詳解】去分母得,1-2x>15移項得,-2x>15-1合并同類項得,-2x>14系數化為1,得x<-7.故答案為x<-7.【點睛】此題考查了解一元一次不等式,解不等式要依據不等式的基本性質:(1)不等式的兩邊同時加上或減去同一個數或整式不等號的方向不變;(2)不等式的兩邊同時乘以或除以同一個正數不等號的方向不變;(3)不等式的兩邊同時乘以或除以同一個負數不等號的方向改變.13、﹣24【解析】分析:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2S△COD=40=OA·CF=20x2,從而可得x=,由此可得點C的坐標為,這樣由點C在反比例函數的圖象上即可得到k=-24.詳解:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設CF=4x,∵四邊形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四邊形AOED和四邊形DECB都是平行四邊形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴點C的坐標為,∵點C在反比例函數的圖象上,∴k=.故答案為:-24.點睛:本題的解題要點有兩點:(1)作出如圖所示的輔助線,設CF=4x,結合已知條件把OF和OA用含x的式子表達出來;(2)由四邊形AOCB是菱形,點D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.14、x>1【解析】分析:題目要求kx+b>0,即一次函數的圖像在x軸上方時,觀察圖象即可得x的取值范圍.詳解:∵kx+b>0,∴一次函數的圖像在x軸上方時,∴x的取值范圍為:x>1.故答案為x>1.點睛:本題考查了一次函數與一元一次不等式的關系,主要考查學生的觀察視圖能力.15、m≤1【解析】
根據一元二次方程有實數根,得出△≥0,建立關于m的不等式,求出m的取值范圍即可.【詳解】解:由題意知,△=4﹣4(m﹣1)≥0,∴m≤1,故答案為:m≤1.【點睛】此題考查了根的判別式,掌握一元二次方程根的情況與判別式△的關系:△>0,方程有兩個不相等的實數根;△=0,方程有兩個相等的實數根;△<0,方程沒有實數根是本題的關鍵.16、4π﹣1【解析】分析:連結OC,根據勾股定理可求OC的長,根據題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.詳解:連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是的中點,
∴∠COD=45°,
∴OC=CD=4,
∴陰影部分的面積=扇形BOC的面積-三角形ODC的面積
==4π-1.故答案是:4π-1.點睛:考查了正方形的性質和扇形面積的計算,解題的關鍵是得到扇形半徑的長度.三、解答題(共8題,共72分)17、(1)補全圖形見解析;(2)B;(3)估計該年級學生中“經常隨手丟垃圾”的學生約有75人,就該年級經常隨手丟垃圾的學生人數看出仍需要加強公共衛生教育、宣傳和監督.【解析】
(1)根據被調查的總人數求出C情況的人數與B情況人數所占比例即可;(2)根據眾數的定義求解即可;(3)該年級學生中“經常隨手丟垃圾”的學生=總人數×C情況的比值.【詳解】(1)∵被調查的總人數為60÷30%=200人,∴C情況的人數為200﹣(60+130)=10人,B情況人數所占比例為×100%=65%,補全圖形如下:(2)由條形圖知,B情況出現次數最多,所以眾數為B,故答案為B.(3)1500×5%=75,答:估計該年級學生中“經常隨手丟垃圾”的學生約有75人,就該年級經常隨手丟垃圾的學生人數看出仍需要加強公共衛生教育、宣傳和監督.【點睛】本題考查了眾數與扇形統計圖與條形統計圖,解題的關鍵是熟練的掌握眾數與扇形統計圖與條形統計圖的相關知識點.18、(1)2016;(2)a(a﹣2),.【解析】試題分析:(1)分別根據0指數冪及負整數指數冪的計算法則、特殊角的三角函數值、絕對值的性質及數的開方法則計算出各數,再根據實數混合運算的法則進行計算即可;(2)先算括號里面的,再算除法,最后把a的值代入進行計算即可.試題解析:(1)原式==2016;(2)原式====a(a﹣2),當a=時,原式==.19、(1);(2)和;(3)【解析】
(1)設,,再根據根與系數的關系得到,根據勾股定理得到:、,根據列出方程,解方程即可;(2)求出A、B坐標,設出點Q坐標,利用平行四邊形的性質,分類討論點P坐標,利用全等的性質得出P點的橫坐標后,分別代入拋物線解析式,求出P點坐標;(3)過點作DH⊥軸于點,由::,可得::.設,可得點坐標為,可得.設點坐標為.可證△∽△,利用相似性質列出方程整理可得到①,將代入拋物線上,可得②,聯立①②解方程組,即可解答.【詳解】解:設,,則是方程的兩根,∴.∵已知拋物線與軸交于點.∴在△中:,在△中:,∵△為直角三角形,由題意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令則,∴,∴.①以為邊,以點、、、Q為頂點的四邊形是四邊形時,設拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標為,∴即點坐標為.②當以為邊,以點、、、Q為頂點的四邊形是四邊形時,設拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標為,∴即點坐標為∴符合條件的點坐標為和.過點作DH⊥軸于點,∵::,∴::.設,則點坐標為,∴.∵點在拋物線上,∴點坐標為,由(1)知,∴,∵∥,∴△∽△,∴,∴,即①,又在拋物線上,∴②,將②代入①得:,解得(舍去),把代入②得:.【點睛】本題是代數幾何綜合題,考查了二次函數圖象性質、一元二次方程根與系數關系、三角形相似以及平行四邊形的性質,解答關鍵是綜合運用數形結合分類討論思想.20、,1+【解析】
運用公式化簡,再代入求值.【詳解】原式===,當x=+1時,原式=.【點睛】考查分式的化簡求值、整式的化簡求值,解答本題的關鍵是明確它們各自的計算方法.21、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】
(1)根據四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點D關于直線AE的對稱點為點F,即可證明出∠DBF=90°,故GF⊥GD,再根據∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,FG=DG,FG⊥DG,再分別求出∠GFD與∠DBC的角度,再根據三角函數的性質可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據菱形的性質可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點D關于直線AE的對稱點為點F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點D關于直線AE的對稱點為點F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,FG=DG,FG⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點D與點F關于AE對稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【點睛】本題考查了正方形、菱形、相似三角形的性質,解題的根據是熟練的掌握正方形、菱形、相似三角形的性質.22、(1)證明見解析;(2)BP=1.【解析】分析:(1)連接OB,如圖,根據圓周角定理得到∠ABD=90°,再根據切線的性質得到∠OBC=90°,然后利用等量代換進行證明;(2)證明△AOP∽△ABD,然后利用相似比求BP的長.詳(1)證明:連接OB,如圖,∵AD是⊙O的直徑,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC為切線,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴,即,∴BP=1.點睛:本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.也考查了圓周角定理和相似三角形的判定與性質.23、(1)∠EAD的余切值為;(2)=.【解析】
(1)在Rt△ADB中,根據AB=13,cos∠BAC=,求出AD的長,由勾股定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 充分準備的行政組織理論試題及答案
- 西藥批發企業客戶關系管理策略與實施考核試卷
- 嵌入式開發考試案例解析試題及答案
- 行政組織理論的實踐性分析與2025年試題及答案
- 四級軟件測試職業生涯規劃試題及答案
- 軟件測試工程師考試常見問題試題及答案
- 嵌入式系統的故障排除指南試題及答案
- 疾病預防控制檢測考核試卷
- 油品質量分析與檢測技術考核試卷
- 開發中的最佳實踐試題及答案
- 家具供貨結算協議書
- 2025屆湖南省邵陽市高三下學期第三次聯考物理試卷(含答案)
- 2025年公證員資格考試全國范圍真題及答案
- 叉車作業安全協議書
- 房屋解除轉讓協議書
- 小學生美術講課課件
- 新聞采訪考試試題及答案
- 2025年北京市西城區高三語文二模考試卷附答案解析
- 2024-2025學年滬教版(五四學制)七年級英語下學期考點突破:書面表達15篇(含答案)
- JJF 2215-2025移動源排放顆粒物數量檢測儀校準規范
- 選擇性必修1 《當代國際政治與經濟》(主觀題答題模版)
評論
0/150
提交評論