




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省鎮江市句容市第二中學2024年中考猜題數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點從矩形的頂點出發,沿以的速度勻速運動到點,圖是點運動時,的面積隨運動時間變化而變化的函數關系圖象,則矩形的面積為()A. B. C. D.2.某種植基地2016年蔬菜產量為80噸,預計2018年蔬菜產量達到100噸,求蔬菜產量的年平均增長率,設蔬菜產量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1003.計算4+(﹣2)2×5=()A.﹣16B.16C.20D.244.某運動會頒獎臺如圖所示,它的主視圖是()A. B. C. D.5.將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-26.下列運算正確的是()A.a2?a4=a8 B.2a2+a2=3a4 C.a6÷a2=a3 D.(ab2)3=a3b67.如圖,在△ABC中,AB=AC=5,BC=6,點M為BC的中點,MN⊥AC于點N,則MN等于()A.?
B.?
C.?
D.?8.下列運算中,計算結果正確的是()A.a2?a3=a6B.a2+a3=a5C.(a2)3=a6D.a12÷a6=a29.在數軸上到原點距離等于3的數是()A.3 B.﹣3 C.3或﹣3 D.不知道10.關于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a≠±1 B.a=1 C.a=﹣1 D.a=±111.tan30°的值為()A.12 B.32 C.312.-5的相反數是()A.5 B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知同一個反比例函數圖象上的兩點、,若,且,則這個反比例函數的解析式為______.14.當x=_________時,分式的值為零.15.如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場大雨過后,水面寬為80cm,則水位上升______cm.16.閱讀下面材料:在數學課上,老師提出利用尺規作圖完成下面問題:已知:求作:的內切圓.小明的作法如下:如圖2,作,的平分線BE和CF,兩線相交于點O;過點O作,垂足為點D;
點O為圓心,OD長為半徑作所以,即為所求作的圓.請回答:該尺規作圖的依據是______.17.我國古代《易經》一書中記載,遠古時期,人們通過在繩子上打結來記錄數量,即“結繩記數”.如圖,一位婦女在從右到左依次排列的繩子上打結,滿六進一,用來記錄采集到的野果數量,由圖可知,她一共采集到的野果數量為_____個.18.如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,則∠ADB′等于_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a、b滿足+|b﹣6|=0,點B在第一象限內,點P從原點出發,以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.a=,b=,點B的坐標為;當點P移動4秒時,請指出點P的位置,并求出點P的坐標;在移動過程中,當點P到x軸的距離為5個單位長度時,求點P移動的時間.20.(6分)列方程解應用題:為宣傳社會主義核心價值觀,某社區居委會計劃制作1200個大小相同的宣傳欄.現有甲、乙兩個廣告公司都具備制作能力,居委會派出相關人員分別到這兩個廣告公司了解情況,獲得如下信息:信息一:甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天;信息二:乙公司每天制作的數量是甲公司每天制作數量的1.2倍.根據以上信息,求甲、乙兩個廣告公司每天分別能制作多少個宣傳欄?21.(6分)解分式方程:-1=22.(8分)如圖,在平面直角坐標系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.(1)求k和b的值;(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標;(3)在拋物線上是否存在點E:它關于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標,如果不存在,試說明理由.23.(8分)如圖,在平面直角坐標系中,拋物線y=-x2+bx+c與x軸交于點A(-1,0),點B(3,0),與y軸交于點C,線段BC與拋物線的對稱軸交于點E、P為線段BC上的一點(不與點B、C重合),過點P作PF∥y軸交拋物線于點F,連結DF.設點P的橫坐標為m.(1)求此拋物線所對應的函數表達式.(2)求PF的長度,用含m的代數式表示.(3)當四邊形PEDF為平行四邊形時,求m的值.24.(10分)如圖,AB∥CD,△EFG的頂點F,G分別落在直線AB,CD上,GE交AB于點H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度數.25.(10分)請根據圖中提供的信息,回答下列問題:(1)一個水瓶與一個水杯分別是多少元?(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規定:這兩種商品都打八折;乙商場規定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數)個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)26.(12分)如圖,AB為⊙O的直徑,點C,D在⊙O上,且點C是的中點,過點C作AD的垂線EF交直線AD于點E.(1)求證:EF是⊙O的切線;(2)連接BC,若AB=5,BC=3,求線段AE的長.27.(12分)今年以來,我國持續大面積的霧霾天氣讓環保和健康問題成為焦點.為了調查學生對霧霾天氣知識的了解程度,某校在學生中做了一次抽樣調查,調查結果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據調查統計結果,繪制了不完整的三種統計圖表.對霧霾了解程度的統計表:對霧霾的了解程度
百分比
A.非常了解
5%
B.比較了解
m
C.基本了解
45%
D.不了解
n
請結合統計圖表,回答下列問題.(1)本次參與調查的學生共有人,m=,n=;(2)圖2所示的扇形統計圖中D部分扇形所對應的圓心角是度;(3)請補全條形統計圖;(4)根據調查結果,學校準備開展關于霧霾知識競賽,某班要從“非常了解”態度的小明和小剛中選一人參加,現設計了如下游戲來確定,具體規則是:把四個完全相同的乒乓球標上數字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機摸出一個球,另一人再從剩下的三個球中隨機摸出一個球.若摸出的兩個球上的數字和為奇數,則小明去;否則小剛去.請用樹狀圖或列表法說明這個游戲規則是否公平.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
由函數圖象可知AB=2×2=4,BC=(6-2)×2=8,根據矩形的面積公式可求出.【詳解】由函數圖象可知AB=2×2=4,BC=(6-2)×2=8,∴矩形的面積為4×8=32,故選:C.【點睛】本題考查動點運動問題、矩形面積等知識,根據圖形理解△ABP面積變化情況是解題的關鍵,屬于中考常考題型.2、A【解析】
利用增長后的量=增長前的量×(1+增長率),設平均每次增長的百分率為x,根據“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產量的年平均增長率為x,根據2016年蔬菜產量為80噸,則2017年蔬菜產量為80(1+x)噸,2018年蔬菜產量為80(1+x)(1+x)噸,預計2018年蔬菜產量達到100噸,即:80(1+x)2=100,故選A.【點睛】本題考查了一元二次方程的應用(增長率問題).解題的關鍵在于理清題目的含義,找到2017年和2018年的產量的代數式,根據條件找準等量關系式,列出方程.3、D【解析】分析:根據有理數的乘方、乘法和加法可以解答本題.詳解:4+(﹣2)2×5=4+4×5=4+20=24,故選:D.點睛:本題考查有理數的混合運算,解答本題的關鍵是明確有理數的混合運算的計算方法.4、C【解析】
從正面看到的圖形如圖所示:,故選C.5、A【解析】試題分析:根據函數圖象右移減、左移加,上移加、下移減,可得答案.解:將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是y=(x﹣1)2+2,故選A.考點:二次函數圖象與幾何變換.6、D【解析】根據同底數冪的乘法,合并同類項,同底數冪的除法,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、a2?a4=a6,故此選項錯誤;B、2a2+a2=3a2,故此選項錯誤;C、a6÷a2=a4,故此選項錯誤;D、(ab2)3=a3b6,故此選項正確..故選D.考點:同底數冪的乘法,合并同類項,同底數冪的除法,冪的乘方與積的乘方.7、A【解析】
連接AM,根據等腰三角形三線合一的性質得到AM⊥BC,根據勾股定理求得AM的長,再根據在直角三角形的面積公式即可求得MN的長.【詳解】解:連接AM,
∵AB=AC,點M為BC中點,
∴AM⊥CM(三線合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,∴根據勾股定理得:AM===4,
又S△AMC=MN?AC=AM?MC,∴MN==.
故選A.【點睛】綜合運用等腰三角形的三線合一,勾股定理.特別注意結論:直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.8、C【解析】
根據同底數冪相乘,底數不變指數相加;冪的乘方,底數不變指數相減;同底數冪相除,底數不變指數相減對各選項分析判斷即可得解.【詳解】A、a2?a3=a2+3=a5,故本選項錯誤;B、a2+a3不能進行運算,故本選項錯誤;C、(a2)3=a2×3=a6,故本選項正確;D、a12÷a6=a12﹣6=a6,故本選項錯誤.故選:C.【點睛】本題考查了同底數冪的乘法、冪的乘方、同底數冪的除法,熟練掌握運算法則是解題的關鍵.9、C【解析】
根據數軸上到原點距離等于3的數為絕對值是3的數即可求解.【詳解】絕對值為3的數有3,-3.故答案為C.【點睛】本題考查數軸上距離的意義,解題的關鍵是知道數軸上的點到原點的距離為絕對值.10、C【解析】
根據一元一次方程的定義即可求出答案.【詳解】由題意可知:,解得a=?1故選C.【點睛】本題考查一元二次方程的定義,解題的關鍵是熟練運用一元二次方程的定義,本題屬于基礎題型.11、D【解析】
直接利用特殊角的三角函數值求解即可.【詳解】tan30°=33,故選:D【點睛】本題考查特殊角的三角函數的值的求法,熟記特殊的三角函數值是解題的關鍵.12、A【解析】由相反數的定義:“只有符號不同的兩個數互為相反數”可知-5的相反數是5.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、y=【解析】解:設這個反比例函數的表達式為y=.∵P1(x1,y1),P2(x2,y2)是同一個反比例函數圖象上的兩點,∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴這個反比例函數的解析式為:y=.故答案為y=.點睛:本題考查了反比例函數圖象上點的坐標特征,所有在反比例函數上的點的橫縱坐標的積應等于比例系數.同時考查了式子的變形.14、2【解析】
根據若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1計算即可.【詳解】解:依題意得:2﹣x=1且2x+2≠1.解得x=2,故答案為2.【點睛】本題考查的是分式為1的條件和一元二次方程的解法,掌握若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1是解題的關鍵.15、10或1【解析】
分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當水位上升到圓心以下時
水面寬80cm時,則,水面上升的高度為:;當水位上升到圓心以上時,水面上升的高度為:,綜上可得,水面上升的高度為30cm或1cm,故答案為:10或1.【點睛】本題考查了垂徑定理的應用,掌握垂徑定理、靈活運用分類討論的思想是解題的關鍵.16、到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經過半徑的外端,并且垂直于這條半徑的直線是圓的切線.【解析】
根據三角形的內切圓,三角形的內心的定義,角平分線的性質即可解答.【詳解】解:該尺規作圖的依據是到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經過半徑的外端,并且垂直于這條半徑的直線是圓的切線;故答案為到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經過半徑的外端,并且垂直于這條半徑的直線是圓的切線.【點睛】此題主要考查了復雜作圖,三角形的內切圓與內心,關鍵是掌握角平分線的性質.17、1【解析】分析:類比于現在我們的十進制“滿十進一”,可以表示滿六進一的數為:萬位上的數×64+千位上的數×63+百位上的數×62+十位上的數×6+個位上的數,即1×64+2×63+3×62+0×6+2=1.詳解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案為:1.點睛:本題是以古代“結繩計數”為背景,按滿六進一計數,運用了類比的方法,根據圖中的數學列式計算;本題題型新穎,一方面讓學生了解了古代的數學知識,另一方面也考查了學生的思維能力.18、40°.【解析】
∵將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案為40°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)4,6,(4,6);(2)點P在線段CB上,點P的坐標是(2,6);(3)點P移動的時間是2.5秒或5.5秒.【解析】試題分析:(1)根據可以求得的值,根據長方形的性質,可以求得點的坐標;
(2)根據題意點從原點出發,以每秒2個單位長度的速度沿著的線路移動,可以得到當點移動4秒時,點的位置和點的坐標;
(3)由題意可以得到符合要求的有兩種情況,分別求出兩種情況下點移動的時間即可.試題解析:(1)∵a、b滿足∴a?4=0,b?6=0,解得a=4,b=6,∴點B的坐標是(4,6),故答案是:4,6,(4,6);(2)∵點P從原點出發,以每秒2個單位長度的速度沿著O?C?B?A?O的線路移動,∴2×4=8,∵OA=4,OC=6,∴當點P移動4秒時,在線段CB上,離點C的距離是:8?6=2,即當點P移動4秒時,此時點P在線段CB上,離點C的距離是2個單位長度,點P的坐標是(2,6);(3)由題意可得,在移動過程中,當點P到x軸的距離為5個單位長度時,存在兩種情況,第一種情況,當點P在OC上時,點P移動的時間是:5÷2=2.5秒,第二種情況,當點P在BA上時,點P移動的時間是:(6+4+1)÷2=5.5秒,故在移動過程中,當點P到x軸的距離為5個單位長度時,點P移動的時間是2.5秒或5.5秒.20、甲廣告公司每天能制作1個宣傳欄,乙廣告公司每天能制作2個宣傳欄.【解析】
設甲廣告公司每天能制作x個宣傳欄,則乙廣告公司每天能制作1.2x個宣傳欄,然后根據“甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天”列出方程求解即可.【詳解】解:設甲廣告公司每天能制作x個宣傳欄,則乙廣告公司每天能制作1.2x個宣傳欄.根據題意得:1200x解得:x=1.經檢驗:x=1是原方程的解且符合實際問題的意義.∴1.2x=1.2×1=2.答:甲廣告公司每天能制作1個宣傳欄,乙廣告公司每天能制作2個宣傳欄.【點睛】此題考查了分式方程的應用,找出等量關系為兩廣告公司的工作時間的差為10天是解題的關鍵.21、7【解析】
根據分式的性質及等式的性質進行去分母,去括號,移項,合并同類項,未知數系數化為1即可.【詳解】-1=3-(x-3)=-13-x+3=-1x=7【點睛】此題主要考查分式方程的求解,解題的關鍵是正確去掉分母.22、(1)k=-,b=1;(1)(0,1)和【解析】分析:(1)由直線經過點,可得.由拋物線的對稱軸是直線,可得,進而得到A、B、D的坐標,然后分兩種情況討論即可;(3)設E(a,),E關于直線AB的對稱點E′為(0,b),EE′與AB的交點為P.則EE′⊥AB,P為EE′的中點,列方程組,求解即可得到a的值,進而得到答案.詳解:(1)由直線經過點,可得.由拋物線的對稱軸是直線,可得.∵直線與x軸、y軸分別相交于點、,∴點的坐標是,點的坐標是.∵拋物線的頂點是點,∴點的坐標是.∵點是軸上一點,∴設點的坐標是.∵△BCG與△BCD相似,又由題意知,,∴△BCG與△相似有兩種可能情況:①如果,那么,解得,∴點的坐標是.②如果,那么,解得,∴點的坐標是.綜上所述:符合要求的點有兩個,其坐標分別是和.(3)設E(a,),E關于直線AB的對稱點E′為(0,b),EE′與AB的交點為P,則EE′⊥AB,P為EE′的中點,∴,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.當a=-1時,=;當a=1時,=;∴點的坐標是或.點睛:本題是二次函數的綜合題.考查了二次函數的性質、解析式的求法以及相似三角形的性質.解答(1)問的關鍵是要分類討論,解答(3)的關鍵是利用兩直線垂直則k的乘積為-1和P是EE′的中點.23、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.【解析】
(1)根據待定系數法,可得函數解析式;(2)根據自變量與函數值的對應關系,可得C點坐標,根據平行于y軸的直線上兩點之間的距離是較大的縱坐標減較的縱坐標,可得答案;(1)根據自變量與函數值的對應關系,可得F點坐標,根據平行于y軸的直線上兩點之間的距離是較大的縱坐標減較的縱坐標,可得DE的長,根據平行四邊形的對邊相等,可得關于m的方程,根據解方程,可得m的值.【詳解】解:(1)∵點A(-1,0),點B(1,0)在拋物線y=-x2+bx+c上,∴,解得,此拋物線所對應的函數表達式y=-x2+2x+1;(2)∵此拋物線所對應的函數表達式y=-x2+2x+1,∴C(0,1).設BC所在的直線的函數解析式為y=kx+b,將B、C點的坐標代入函數解析式,得,解得,即BC的函數解析式為y=-x+1.由P在BC上,F在拋物線上,得P(m,-m+1),F(m,-m2+2m+1).PF=-m2+2m+1-(-m+1)=-m2+1m.(1)如圖,∵此拋物線所對應的函數表達式y=-x2+2x+1,∴D(1,4).∵線段BC與拋物線的對稱軸交于點E,當x=1時,y=-x+1=2,∴E(1,2),∴DE=4-2=2.由四邊形PEDF為平行四邊形,得PF=DE,即-m2+1m=2,解得m1=1,m2=2.當m=1時,線段PF與DE重合,m=1(不符合題意,舍).當m=2時,四邊形PEDF為平行四邊形.考點:二次函數綜合題.24、20°【解析】
依據三角形內角和定理可得∠FGH=55°,再根據GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根據∠FHG是△EFH的外角,即可得出∠EFB=55°-35°=20°.【詳解】∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【點睛】本題考查了平行線的性質,兩直線平行時,應該想到它們的性質,由兩直線平行的關系得到角之間的數量關系,從而達到解決問題的目的.25、(1)一個水瓶40元,一個水杯是8元;(2)當10<n<25時,選擇乙商場購買更合算.當n>25時,選擇甲商場購買更合算.【解析】
(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據題意列出方程,求出方程的解即可得到結果;(2)計算出兩商場得費用,比較即可得到結果.【詳解】解:(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據題意得:3x+4(48﹣x)=152,解得:x=40,則一個水瓶40元,一個水杯是8元;(2)甲商場
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025化工原料采購銷售合同范本參考
- 2025年自建房設計與施工一體化合同協議書
- 患者的心理護理
- 2025年吉林省長春市寬城區中考二模英語試卷
- 招投標實務操作
- 醫學檢驗技術分析模板
- NC6應付管理培訓
- 途牛:2022國慶旅游消費趨勢報告
- 八年級語文上冊《大自然的語言》教學設計
- 三下鄉社會實踐個人工作總結模版
- 癲癇護理查房.ppt課件
- 第11章-網絡故障診斷及排除ppt課件(全)
- Access-2016數據庫教程課件(完整版)
- 軍事地形學地形圖基本知識
- 雙減背景下小學語文作業設計課題研究方案
- 北京工業大學信號處理工程應用訓練
- 投影融合方案
- 試卷密封線模板
- 廣告牌鋼結構設計計算書(共39頁).doc
- 原發性肝癌ppt課件
- 山東省立醫院進修人員申請表
評論
0/150
提交評論