




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省東莞市中學堂鎮六校中考適應性考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.2.定義運算“※”為:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.則函數y=2※x的圖象大致是()A. B.C. D.3.如圖所示的四邊形,與選項中的一個四邊形相似,這個四邊形是()A. B. C. D.4.某青年排球隊12名隊員年齡情況如下:年齡1819202122人數14322則這12名隊員年齡的眾數、中位數分別是()A.20,19 B.19,19 C.19,20.5 D.19,205.扇形的半徑為30cm,圓心角為120°,用它做成一個圓錐的側面,則圓錐底面半徑為()A.10cm B.20cm C.10πcm D.20πcm6.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數為()A.60° B.65° C.70° D.75°7.姜老師給出一個函數表達式,甲、乙、丙三位同學分別正確指出了這個函數的一個性質.甲:函數圖像經過第一象限;乙:函數圖像經過第三象限;丙:在每一個象限內,y值隨x值的增大而減小.根據他們的描述,姜老師給出的這個函數表達式可能是()A. B. C. D.8.若※是新規定的某種運算符號,設a※b=b2-a,則-2※x=6中x的值()A.4 B.8 C.2 D.-29.如圖,等邊△ABC內接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(
)A.
B.
C.
D.10.2017年,山西省經濟發展由“疲”轉“興”,經濟增長步入合理區間,各項社會事業發展取得顯著成績,全面建成小康社會邁出嶄新步伐.2018年經濟總體保持平穩,第一季度山西省地區生產總值約為3122億元,比上年增長6.2%.數據3122億元用科學記數法表示為()A.3122×108元 B.3.122×103元C.3122×1011元 D.3.122×1011元二、填空題(本大題共6個小題,每小題3分,共18分)11.一個幾何體的三視圖如左圖所示,則這個幾何體是()A. B. C. D.12.PA、PB分別切⊙O于點A、B,∠PAB=60°,點C在⊙O上,則∠ACB的度數為_____.13.若a2﹣2a﹣4=0,則5+4a﹣2a2=_____.14.如圖,在邊長為3的菱形ABCD中,點E在邊CD上,點F為BE延長線與AD延長線的交點.若DE=1,則DF的長為________.15.計算:=_______.16.計算:(π﹣3)0﹣2-1=_____.三、解答題(共8題,共72分)17.(8分)如圖,在四邊形中,為一條對角線,,,.為的中點,連結.(1)求證:四邊形為菱形;(2)連結,若平分,,求的長.18.(8分)2018年4月12日上午,新中國歷史上最大規模的海上閱兵在南海海域隆重舉行,中國人解放軍海軍多艘戰艦、多架戰機和1萬余名官兵參加了海上閱兵式,已知戰艦和戰機總數是124,戰數的3倍比戰機數的2倍少8.問有多少艘戰艦和多少架戰機參加了此次閱兵.19.(8分)如圖所示,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長線交BD于點P.(1)把△ABC繞點A旋轉到圖1,BD,CE的關系是(選填“相等”或“不相等”);簡要說明理由;(2)若AB=3,AD=5,把△ABC繞點A旋轉,當∠EAC=90°時,在圖2中作出旋轉后的圖形,PD=,簡要說明計算過程;(3)在(2)的條件下寫出旋轉過程中線段PD的最小值為,最大值為.20.(8分)如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.(1)求證:直線CE是⊙O的切線.(2)若BC=3,CD=3,求弦AD的長.21.(8分)主題班會上,王老師出示了如圖所示的一幅漫畫,經過同學們的一番熱議,達成以下四個觀點:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理競爭,合作雙贏.要求每人選取其中一個觀點寫出自己的感悟.根據同學們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據圖表中提供的信息,解答下列問題:觀點頻數頻率Aa0.2B120.24C8bD200.4(1)參加本次討論的學生共有人;表中a=,b=;(2)在扇形統計圖中,求D所在扇形的圓心角的度數;(3)現準備從A,B,C,D四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點D(合理競爭,合作雙贏)的概率.22.(10分)如圖,已知平行四邊形ABCD,點M、N分別是邊DC、BC的中點,設=,=,求向量關于、的分解式.23.(12分)某工廠計劃在規定時間內生產24000個零件,若每天比原計劃多生產30個零件,則在規定時間內可以多生產300個零件.求原計劃每天生產的零件個數和規定的天數.為了提前完成生產任務,工廠在安排原有工人按原計劃正常生產的同時,引進5組機器人生產流水線共同參與零件生產,已知每組機器人生產流水線每天生產零件的個數比20個工人原計劃每天生產的零件總數還多20%,按此測算,恰好提前兩天完成24000個零件的生產任務,求原計劃安排的工人人數.24.如圖,BD⊥AC于點D,CE⊥AB于點E,AD=AE.求證:BE=CD.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結論.【詳解】連接OT、OC,∵PT切⊙O于點T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中點,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了等腰三角形的判定與性質和含30度的直角三角形三邊的關系.2、C【解析】
根據定義運算“※”為:a※b=,可得y=2※x的函數解析式,根據函數解析式,可得函數圖象.【詳解】解:y=2※x=,當x>0時,圖象是y=對稱軸右側的部分;當x<0時,圖象是y=對稱軸左側的部分,所以C選項是正確的.【點睛】本題考查了二次函數的圖象,利用定義運算“※”為:a※b=得出分段函數是解題關鍵.3、D【解析】
根據勾股定理求出四邊形第四條邊的長度,進而求出四邊形四條邊之比,根據相似多邊形的性質判斷即可.【詳解】解:作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項中,四條邊之比為1:3:5:5,且對應角相等,故選D.【點睛】本題考查的是相似多邊形的判定和性質,掌握相似多邊形的對應邊的比相等是解題的關鍵.4、D【解析】
先計算出這個隊共有1+4+3+2+2=12人,然后根據眾數與中位數的定義求解.【詳解】這個隊共有1+4+3+2+2=12人,這個隊隊員年齡的眾數為19,中位數為=1.故選D.【點睛】本題考查了眾數:在一組數據中出現次數最多的數叫這組數據的眾數.也考查了中位數的定義.5、A【解析】試題解析:扇形的弧長為:=20πcm,∴圓錐底面半徑為20π÷2π=10cm,故選A.考點:圓錐的計算.6、C【解析】
由等腰三角形的性質可求∠ACD=70°,由平行線的性質可求解.【詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.【點睛】本題考查了等腰三角形的性質,平行線的性質,是基礎題.7、B【解析】y=3x的圖象經過一三象限過原點的直線,y隨x的增大而增大,故選項A錯誤;y=的圖象在一、三象限,在每個象限內y隨x的增大而減小,故選項B正確;y=?的圖象在二、四象限,故選項C錯誤;y=x2的圖象是頂點在原點開口向上的拋物線,在一、二象限,故選項D錯誤;故選B.8、C【解析】解:由題意得:,∴,∴x=±1.故選C.9、A【解析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點睛:本題考查的是三角形的外接圓與外心、扇形面積的計算,掌握等邊三角形的性質、扇形面積公式是解題的關鍵.10、D【解析】
可以用排除法求解.【詳解】第一,根據科學記數法的形式可以排除A選項和C選項,B選項明顯不對,所以選D.【點睛】牢記科學記數法的規則是解決這一類題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、A【解析】
根據主視圖和左視圖可知該幾何體是柱體,根據俯視圖可知該幾何體是豎立的三棱柱.【詳解】根據主視圖和左視圖可知該幾何體是柱體,根據俯視圖可知該幾何體是豎立的三棱柱.主視圖中間的線是實線.故選A.【點睛】考查簡單幾何體的三視圖,掌握常見幾何體的三視圖是解題的關鍵.12、60°或120°.【解析】
連接OA、OB,根據切線的性質得出∠OAP的度數,∠OBP的度數;再根據四邊形的內角和是360°,求出∠AOB的度數,有圓周角定理或圓內接四邊形的性質,求出∠ACB的度數即可.【詳解】解:連接OA、OB.∵PA,PB分別切⊙O于點A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=60°,∴在四邊形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,∴即當C在D處時,∠ACB=60°.在四邊形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.于是∠ACB的度數為60°或120°,故答案為60°或120°.【點睛】本題考查的是切線的性質定理,圓內接四邊形的性質,是一道基礎題.13、-3【解析】試題解析:∵即∴原式故答案為14、1.1【解析】
求出EC,根據菱形的性質得出AD∥BC,得出相似三角形,根據相似三角形的性質得出比例式,代入求出即可.【詳解】∵DE=1,DC=3,∴EC=3-1=2,∵四邊形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴,∴,∴DF=1.1,故答案為1.1.【點睛】此題主要考查了相似三角形的判定與性質,解題關鍵是根據菱形的性質證明△DEF∽△CEB,然后根據相似三角形的性質可求解.15、3【解析】
先把化成,然后再合并同類二次根式即可得解.【詳解】原式=2.故答案為【點睛】本題考查了二次根式的計算:先把各二次根式化為最簡二次根式,再進行然后合并同類二次根式.16、12【解析】
分別利用零指數冪a0=1(a≠0),負指數冪a-p=1a【詳解】解:(π﹣3)0﹣2-1=1-12=1故答案為:12【點睛】本題考查了零指數冪和負整數指數冪的運算,掌握運算法則是解題關鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2)AC=;【解析】
(1)由DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問題;
(2)只要證明△ACD是直角三角形,∠ADC=60°,AD=2即可解決問題;【詳解】(1)證明:∵AD=2BC,E為AD的中點,∴DE=BC,∵AD∥BC,∴四邊形BCDE是平行四邊形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四邊形BCDE是菱形.(2)連接AC,如圖所示:∵∠ADB=30°,∠ABD=90°,∴AD=2AB,∵AD=2BC,∴AB=BC,∴∠BAC=∠BCA,∵AD∥BC,∴∠DAC=∠BCA,∴∠CAB=∠CAD=30°∴AB=BC=DC=1,AD=2BC=2,∵∠DAC=30°,∠ADC=60°,在Rt△ACD中,AC=.【點睛】考查菱形的判定和性質、直角三角形斜邊中線的性質、銳角三角函數等知識,解題的關鍵是熟練掌握菱形的判定方法.18、有48艘戰艦和76架戰機參加了此次閱兵.【解析】
設有x艘戰艦,y架戰機參加了此次閱兵,根據題意列出方程組解答即可.【詳解】設有x艘戰艦,y架戰機參加了此次閱兵,根據題意,得,解這個方程組,得,答:有48艘戰艦和76架戰機參加了此次閱兵.【點睛】此題考查二元一次方程組的應用,關鍵是根據題意列出等量關系進行解答.19、(1)BD,CE的關系是相等;(2)或;(3)1,1【解析】分析:(1)依據△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,進而得到△ABD≌△ACE,可得出BD=CE;(2)分兩種情況:依據∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,進而得到PD=;依據∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,進而得出PB=,PD=BD+PB=;(3)以A為圓心,AC長為半徑畫圓,當CE在⊙A下方與⊙A相切時,PD的值最小;當CE在在⊙A右上方與⊙A相切時,PD的值最大.在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大小.分兩種情況進行討論,即可得到旋轉過程中線段PD的最小值以及最大值.詳解:(1)BD,CE的關系是相等.理由:∵△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案為相等.(2)作出旋轉后的圖形,若點C在AD上,如圖2所示:∵∠EAC=90°,∴CE=,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴,∴PD=;若點B在AE上,如圖2所示:∵∠BAD=90°,∴Rt△ABD中,BD=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴,即,解得PB=,∴PD=BD+PB=+=,故答案為或;(3)如圖3所示,以A為圓心,AC長為半徑畫圓,當CE在⊙A下方與⊙A相切時,PD的值最小;當CE在在⊙A右上方與⊙A相切時,PD的值最大.如圖3所示,分兩種情況討論:在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大小.①當小三角形旋轉到圖中△ACB的位置時,在Rt△ACE中,CE==4,在Rt△DAE中,DE=,∵四邊形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,PD=,即旋轉過程中線段PD的最小值為1;②當小三角形旋轉到圖中△AB'C'時,可得DP'為最大值,此時,DP'=4+3=1,即旋轉過程中線段PD的最大值為1.故答案為1,1.點睛:本題屬于幾何變換綜合題,主要考查了等腰直角三角形的性質、旋轉變換、全等三角形的判定和性質、相似三角形的判定和性質、圓的有關知識,解題的關鍵是靈活運用這些知識解決問題,學會分類討論的思想思考問題,學會利用圖形的特殊位置解決最值問題.20、(1)證明見解析(2)【解析】
(1)連結OC,如圖,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,則∠3=∠2,于是可判斷OD∥AE,根據平行線的性質得OD⊥CE,然后根據切線的判定定理得到結論;(2)由△CDB∽△CAD,可得,推出CD2=CB?CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,設BD=k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解決問題.【詳解】(1)證明:連結OC,如圖,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切線;(2)∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴,∴CD2=CB?CA,∴(3)2=3CA,∴CA=6,∴AB=CA﹣BC=3,,設BD=k,AD=2k,在Rt△ADB中,2k2+4k2=5,∴k=,∴AD=.21、(1)50、10、0.16;(2)144°;(3).【解析】
(1)由B觀點的人數和所占的頻率即可求出總人數;由總人數即可求出a、b的值,(2)用360°乘以D觀點的頻率即可得;(3)畫出樹狀圖,然后根據概率公式列式計算即可得解【詳解】解:(1)參加本次討論的學生共有12÷0.24=50,則a=50×0.2=10,b=8÷50=0.16,故答案為50、10、0.16;(2)D所在扇形的圓心角的度數為360°×0.4=144°;(3)根據題意畫出樹狀圖如下:由樹形圖可知:共有12中可能情況,選中觀點D(合理競爭,合作雙贏)的概率有6種,所以選中觀點D(合理競爭,合作雙贏)的概率為.【點睛】此題考查了列表法或樹狀圖法求概率以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 普定縣2025屆數學四年級第二學期期末調研模擬試題含解析
- 內蒙古巴彥淖爾市臨河區2025屆數學五下期末經典模擬試題含答案
- 望奎縣2025屆四年級數學第二學期期末復習檢測模擬試題含解析
- 山東省濟寧市曲阜一中重點中學2025屆新初三年級調研檢測試題語文試題含解析
- 設備租賃合同完整模板
- 碳酸鈣購銷合同
- 遼寧省大連2022-2023學年八年級上學期期末物理試題2【含答案】
- 視覺識別系統設計合同樣本
- 教育培訓合同授課講師協議書
- 綠化建設項目景觀設計咨詢服務合同版
- SYT 0452-2021 石油天然氣金屬管道焊接工藝評定-PDF解密
- 飛行汽車發展白皮書1.0-2024-05-智能網聯
- 國家電網公司輸變電工程工藝標準庫變電工程部分
- 湖北省武昌區七校2023-2024學年八年級下學期期中聯考英語試卷+
- 醫學數據標注培訓課件模板
- 2024-2025北京中考英語真題閱讀CD篇
- 2024城鎮燃氣用環壓式不銹鋼管道工程技術規程
- 《養成良好的行為習慣》主題班會課件
- 2024屆高三一輪復習《庖丁解牛》課件
- 2023年10月自考00226知識產權法試題及答案含評分標準
- 油畫人體200張東方姑娘的極致美
評論
0/150
提交評論