




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
《勾股定理》說課稿(7篇)《勾股定理》優秀說課稿篇一一、教學目標(一)知識點1、體驗勾股定理的探索過程,由特例猜想勾股定理,再由特例驗證勾股定理。2、會利用勾股定理解釋生活中的簡單現象。(二)能力訓練要求1、在學生充分觀察、歸納、猜想、探索勾股定理的過程中,發展合情推理能力,體會數形結合的思想。2、在探索勾股定理的過程中,發展學生歸納、概括和有條理地表達活動過程及結論的能力。(三)情感與價值觀要求1、培養學生積極參與、合作交流的意識。2、在探索勾股定理的過程中,體驗獲得成功的快樂,鍛煉學生克服困難的`勇氣。二、教學重、難點重點:探索和驗證勾股定理。難點:在方格紙上通過計算面積的方法探索勾股定理。三、教學方法交流探索猜想。在方格紙上,同學們通過計算以直角三角形的三邊為邊長的三個正方形的面積,在合作交流的過程中,比較這三個正方形的面積,由此猜想出直角三角形的三邊關系。四、教具準備1、學生每人課前準備若干張方格紙。2、投影片三張:第一張:填空(記作1.1.1A);第二張:問題串(記作1.1.1B);第三張:做一做(記作1.1.1C)。五。教學過程Ⅰ。創設問題情境,引入新課出示投影片(1.1.1A)(1)三角形按角分類,可分為_________、_________、_________。(2)對于一般的三角形來說,判斷它們全等的條件有哪些?對于直角三角形呢?(3)有兩個直角三角形,如果有兩條邊對應相等,那么這兩個直角三角形一定全等嗎?《勾股定理》說課稿篇二一、說教材分析1.教材的地位和作用華師大版八年級上直角三角形三邊關系是學生在學習數的開方和整式的乘除后的一段內容,它是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它揭示了一個直角三角形三條邊之間的數量關系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數密切聯系起來,在數學的發展中起著重要的作用。因此他的教育教學價值就具體體現在如下三維目標中:知識與技能:1、經歷勾股定理的探索過程,體會數形結合思想。2、理解直角三角形三邊的關系,會應用勾股定理解決一些簡單的實際問題。過程與方法:1、經歷觀察—猜想—歸納—驗證等一系列過程,體會數學定理發現的過程,由特殊到一般的解決問題的方法。2、在觀察、猜想、歸納、驗證等過程中培養學生的數學語言表達能力和初步的邏輯推理能力。情感、態度與價值觀:1、通過對勾股定理歷史的了解,感受數學文化,激發學習興趣。2、在探究活動中,體驗解決問題方法的多樣性,培養學生的合作意識和然所精神。3、讓學生通過動手實踐,增強探究和創新意識,體驗研究過程,學習研究方法,逐步養成一種積極的生動的,自助合作探究的學習方式。由于八年級的學生具有一定分析能力,但活動經驗不足,所以本節課教學重點:勾股定理的探索過程,并掌握和運用它。教學難點:分割,補全法證面積相等,探索勾股定理。二、說教法學法分析:要上好一堂課,就是要把所確定的三維目標有機地溶入到教學過程中去,所以我采用了“引導探究式”的教學方法:先從學生熟知的生活實例出發,以生活實踐為依托,將生活圖形數學化,然后由特殊到一般地提出問題,引導學生在自主探究與合作交流中解決問題,同時也真正體現了數學課堂是學生自己的課堂。學法:我想通過“操作+思考”這樣方式,有效地讓學生在動手、動腦、自主探究與合作交流中來發現新知,同時讓學生感悟到:學習任何知識的最好方法就是自己去探究。三、說教學程序設計1、故事引入新課,激起學生學習興趣。牛頓,瓦特的故事,讓學生科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。畢達哥拉斯的發現引入新課。2、探索新知在這里我設計了四個內容:①探索等腰直角三角形三邊的關系②邊長為3、4、5為邊長的直角三角形的三邊關系③學生畫兩直角邊為2,6的直角三角形,探索三邊的關系④三邊為a、b、c的直角三角形的三邊的關系,(證明)⑤勾股定理歷史介紹,讓學生體會勾股定理的文化價值。體現從特殊到一般的發現問題的過程。3、新知運用:①舉出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)②在直角三角形中,已知∠B=90°,AB=6,BC=8,求AC.③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?④如圖,學校有一塊長方形花鋪,有極少數人為了避開拐角走“捷徑”,在花鋪內走出了一條“路”.他們僅僅少走了步路(假設2步為1米),卻踩傷了花草.4、小結本課:學完了這節課,你有什么收獲?老師補充:科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。數學來源于實踐,而又應用于實踐。解決一個問題的方法是多樣性的,我們要多思考。勾股定是數學史上的明珠,證明方法有很多種,我們將在下一節課學習它。反思:教學設計主要是體現從特殊到一般的知識形成過程,探索問題的設計上有點難,第二個問題應加個3,3為直角邊的等腰直角三角形讓學生分割或者補全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時,這個問題可以不用設計進去,就為后面的練習留足時間。探索時間較長,整個課程推行進度較慢,練習較少。對學生的啟發不夠,對學生的關注不夠,學生對問題的思考不能及時想出來,沒有及時很好的引導,啟發,應讓學生多一些思考的空間,并及時交給思考的方法。學生反應不是太好,能力差,也或許是因為問題設計的較難,沒有很好的體現出探究。預期的目標沒有很好的達成,學生雖然掌握了勾股定理,但探索熱情沒有點燃,思維能力,動手能力,探索精神沒有很好的得到發展。勾股定理說課稿篇三一、教材分析(一)教材地位這節課是九年制義務教育初級中學教材北師大版七年級第二章第一節《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。(二)教學目標知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。情感態度與價值觀:激發學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學。(三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。教學難點:用面積法(拼圖法)發現勾股定理。突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。二、教法與學法分析:學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.教法分析:結合七年級學生和本節教材的。特點,在教學中采用“問題情境建立模型解釋應用拓展鞏固”的模式,選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。三、教學過程設計1.創設情境,提出問題2.實驗操作,模型構建3.回歸生活,應用新知4.知識拓展,鞏固深化5.感悟收獲,布置作業一、創設情境提出問題(1)圖片欣賞勾股定理數形圖1955年希臘發行美麗的勾股樹20xx年國際數學的一枚紀念郵票大會會標設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值。(2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節。二、實驗操作模型構建1.等腰直角三角形(數格子)2.一般直角三角形(割補)問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想。問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節的難點,組織學生合作交流)設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。通過以上實驗歸納總結勾股定理。設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊——一般的認知規律。三。回歸生活應用新知讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。四、知識拓展鞏固深化基礎題,情境題,探索題。設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展。知識的運用得到升華。基礎題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?設計意圖:這道題立足于雙基.通過學生自己創設情境,鍛煉了發散思維.情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力。五、感悟收獲布置作業:這節課你的收獲是什么?作業:1、課本習題2.12、搜集有關勾股定理證明的資料。板書設計探索勾股定理如果直角三角形兩直角邊分別為a,b,斜邊為c,那么設計說明:1.探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。《勾股定理》優秀說課稿篇四一、教材分析:(一)本節內容在全書和章節的地位這節課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形的主要依據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯系比較,理解勾股定理,以便于正確的進行運用。(二)三維教學目標:1、理解并掌握勾股定理的內容和證明,能夠靈活運用勾股定理及其計算;2、通過觀察分析,大膽猜想,并探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和從特殊到一般的思想方法。通過介紹中國古代勾股方面的成就,激發學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養學生的民族自豪感和鉆研精神。(三)教學重點、難點:勾股定理的證明與運用用面積法等方法證明勾股定理對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。1、創設情景,激發思維:創設生動、啟發性的問題情景,激發學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態下進入學習過程;2、自主探索,敢于猜想:充分讓自己動手操作,大膽猜想數學問題的結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協作,從而形成生動的課堂環境;3、張揚個性,展示風采:實行“小組合作制”,各小組中自己推薦一人擔任“發言人”,一人擔任“書記員”,在討論結束后,由小組的“發言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的學習積極性。二、教法與學法分析數學是一門培養人的思維,發展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結構和心理特征,本節課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神。基本的教學程序是“創設情景—動手操作—歸納驗證—問題解決—課堂小結—布置作業”六個方面。新課標明確提出要培養“可持續發展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。三、教學過程設計(一)創設情景多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的`距離是2。5米,請問消防隊員能否進入三樓滅火?問題的設計有一定的挑戰性,目的是激發學生的探究欲望,老師要注意引導學生將實際問題轉化為數學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數學來源于生活”,學習數學是為更好“服務于生活”。(二)動手操作1、課件出示課本P99圖19、2、1:觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結論?學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發現SP+SQ=SR(此時讓小組“發言人”發言),從而讓學生通過正方形的面積之間的關系發現:對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AC2+BC2=AB2。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。2、緊接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖19、2、2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發現:對于一般的以整數為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數學思想及學習過程,提高學生的分析問題和解決問題的能力。3、再問:當邊長不為整數的直角三角形是否也存在這一結論呢?投影例題:一個邊長分別為1、5,3、6,3、9這種含有小數的直角三角形,讓學生計算。這樣設計的'目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。(三)歸納驗證通過動手操作、合作交流,探索邊長為整數的等腰直角三角形到一般的直角三角形,再到邊長為小數的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數學的樂趣,,使學生學會“文字語言”與“數學語言”這兩種表達方式,各小組“發言人”的積極表現,整堂課充分發揮學生的主體作用,真正獲取知識,解決問題。先后三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數形結合和從特殊到一般的數學思想,而且這一過程也有利于培養學生嚴謹、科學的學習態度。(四)問題解決1、讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。2、自學課本P101例1,然后完成P102練習。(五)課堂小結1、小組成員從內容、數學思想方法、獲取知識的途徑進行小結,后由“發言人”匯報,小組間要互相比一比,看看哪一個小組表現最佳。2、教師用多媒體介紹“勾股定理史話”①《周髀算徑》:西周的商高(公元一千多年前)發現了“勾三股四弦五”這一規律。②康熙數學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創。目的是對學生進行愛國主義教育,激勵學生奮發向上。(六)布置作業:課本P104習題19、2中的第1、2、3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯系。以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!《勾股定理》說課稿篇五本節課設計力求讓學生參與知識的發現過程,體現以學生為主體,以促進學生發展為本的教學理念,變知識的傳授者為學生自主探求知識的引導者、指導者、合作者。并利用多媒體,直觀教具演示,營造一個聲像同步,能動能靜的教學情境,給學生提供一個探索的空間,促使學生主動參與,親身體驗勾股定理的探索證明過程,從而鍛煉思維、激發創造,優化課堂教學。努力做到有傳統的教學課堂像實驗課堂轉變,使學生真正成為學習的主人,培養了學生的素質能力,達到了良好的教學效果。(一)創設情境,引入新課課前首先讓學生閱讀趙爽的弦圖相關知識讓他們體會中國古代科學的發達。在課堂上緊密結合前面已學的知識進行導入。如提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?你還記得三角形的三邊遵循什么規律嗎?等等一系列的問題激起學生學生的熱情和求知欲,然后順利進入探究。本節我們就來學習一下直角三角形的三條邊除具備前面的性質外還有什么新的特征。(二)引導學生,探究新知①初步感知定理:這一環節我選擇了教材的圖片,講述畢達哥拉斯到朋友家做客時發現用磚鋪成的地面,其中含有直角三角形三邊的數量關系,創設感知情境,提出問題,現在請同學觀察,看看有什么發現?(學案出示)使問題更形象、具體。②提出猜想:在活動1的基礎上,學生已發現一些規律,進一步通過活動2進行看一看、填一填、想一想、議一議、做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質,學生再由淺到深,由特殊到一般的提出問題,啟發學生得出猜想,直角三角形的兩直角邊的平分和等于斜邊的平方。③證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明:通過活動3我充分引導學生利用直觀教具,進行拼圖實驗,在動手操中放手讓學生思考、討論、合作、交流、探究問題的多種方法。,并對學生的做法給予表揚,使學生在學習過程中,感受到自我創造的快樂,從而分散了教學難點,發現了利用面積相等去證明勾股定理的方法。④總結定理:讓學生自己總結,不完善之處由教師補充,在前面探究活動的基礎上,學生容易得出直角三角形的三邊數量關系即勾股定理。(三)反饋訓練,鞏固新知學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課的達成情況和加強對學生能力的培養,我設計了一組坡有難度的練習題。(四)歸納總結,深化新知本節課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的問題是什么?……通過小結,使學生進一步明確掌握教學目標,使知識成為體系。(五)布置作業。拓展新知讓學生收集有關勾股定理的證明方法,下節課展示、交流。使本節知識得到拓展、延伸,培養了學生能力和思維的深刻性,讓學生感受數學深厚的文化底蘊。《勾股定理》優秀說課稿篇六教學目標1、知識與技能目標學會觀察圖形,勇于探索圖形間的關系,培養學生的空間觀念2、過程與方法(1)經歷一般規律的探索過程,發展學生的抽象思維能力(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數學建模的思想3、情感態度與價值觀(1)通過有趣的問題提高學習數學的興趣(2)在解決實際問題的過程中,體驗數學學習的實用性教學重點:探索、發現事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題教學難點:利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題教學準備:多媒體教學過程:第一環節:創設情境,引入新課(3分鐘,學生觀察、猜想)情景:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?第二環節:合作探究(15分鐘,學生分組合作探究)學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發現:沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數學解決實際問題的方法:建立數學模型,構圖,計算學生匯總了四種方案:(1)(2)(3)(4)學生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短.學生在情形(3)和(4)的比較中出現困難,但還是有學生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據兩點之間線段最短可判斷(4)最短如圖:(1)中A→B的路線長為:AA’+d;(2)中A→B的路線長為:AA’+A’B>AB;(3)中A→B的路線長為:AO+OB>AB;(4)中A→B的。路線長為:AB.得出結論:利用展開圖中兩點之間,線段最短解決問題,在這個環節中,可讓學生沿母線剪開圓柱體,具體觀察,接下來后提問:怎樣計算AB?在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則。第三環節:做一做(7分鐘,學生合作探究)教材23頁李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,(1)你能替他想辦法完成任務嗎?(2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?(3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?第四環節:鞏固練習(10分鐘,學生獨立完成)1.甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發,他以6/h的速度向正東行走,1小時后乙出發,他以5/h的速度向正北行走.上午10:00,甲、乙兩人相距多遠?2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?第五環節課堂小結(3分鐘,師生問答)內容:1、如何利用勾股定理及逆定理解決最短路程問題?第六環節:布置作業(2分鐘,學生分別記錄)內容:作業:1.課本習題1.5第1,2,3題.要求:A組(學優生):1、2、3B組(中等生):1、2C組(后三分之一生):1板書設計:教學反思:《勾股定理》優秀說課稿篇七一、教材分析:勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。據此,制定教學目標如下:1、理解并掌握勾股定理及其證明。2、能夠靈活地運用勾股定理及其計算。3、培養學生觀察、比較、分析、推理的能力。4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。二、教
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國機器聽診器市場調查研究報告
- 2025年中國數字影像同軸線數據監測研究報告
- 2025-2030年中國乙丁酰脲境外融資報告
- 2025-2030年中國丁醇境外融資報告
- 2025至2031年中國線控飛機行業投資前景及策略咨詢研究報告
- 肇慶市實驗中學高中歷史三:第課毛澤東與馬克思主義的中國化教案
- 2025至2031年中國組合終端行業投資前景及策略咨詢研究報告
- 新疆生產建設兵團五校2025屆高三下學期1月期末考試物理試題含解析
- 新疆烏魯木齊第六十六中學2025屆初三模擬試題語文試題試卷解析含解析
- 新疆烏魯木齊市十中2024-2025學年高三下學期高中聯合考試數學試題含解析
- 房地產廣告效果的評測與分析
- 華大新高考聯盟2025屆高三4月教學質量測評歷史+答案
- 2025-2030中國寵物行業市場發展分析及發展趨勢與投資前景預測報告
- AGC-AVC培訓課件教學課件
- 山洪災害防御知識課件
- 決勝新高考·四川名優校聯盟2025屆高三4月聯考英語+答案
- 賓館衛生考試題及答案
- 殯葬法律法規試題及答案
- 帶貨主播職業發展路徑與技能提升指南
- DB52/T 1212-2017 煤礦地面在用瓦斯泵及瓦斯泵站安全檢查規范
- 污水處理設施運維服務投標方案(技術標)
評論
0/150
提交評論