




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
統計軟件SAS簡介及程序范例1SAS簡介《試驗統計方法》教材例題的SAS程序及運行結果1.
SAS簡介2SAS(StatisticalAnalysisSystem,統計分析系統)是當今國際上著名的數據分析軟件系統,其基本部分是SAS/BASE軟件。20世紀60年代末期,由美國北卡羅納州州立大學
(
North
Carolina
StateUniversity)的A.
J.
Barr和J.
H.
Goodnight兩位教授開始開發,
1975
年創建了美國
SAS
研Institute Inc.)。之后,推出的SAS系統,始終以領先的技術和可靠的支持著稱于世,通過不斷發展和完善,目前已成為大型集成應用軟件系統。SAS系統具有統計分析方法豐富、信息儲存簡單、語言編程能力強、能對數據連續處理、使用簡單等特點。SAS是一個出色的統計分析系統,它匯集了大量的統計分析方法,從簡單的描述統計到復雜的多變量分析,編制了大量的使用簡便的統計分析過程。3SAS系統運行的幾個重要前提條件4(一)SAS系統運行時要同時打開的文件較多,因此在微型計算機的系統配置文件CONFIG.SYS中應指定FILES=50或以上;(二)
SAS
系統軟件有時間租期限制,因此只有機器時間(DATE)在軟件有效期內才能運行。時間租期取決于SAS出售版本日期,即所謂的SAS誕生日(BIRTHDAY)。(三)SAS系統應全部安裝到硬盤的SAS子目錄下,硬盤應至少有10M空間。SAS
for
Windows的啟動與退出5(一)啟動SAS
for
Windows的啟動,按如下步驟進行。開機后,直接用鼠標雙擊桌面上SAS系統的快捷鍵圖標,自動顯示主畫
面,即可進入SAS系統。(二)退出 當用完SASforWindows,需要退出時,可以單擊【File】,選擇【Exit】,或者,單擊×(關閉)按鈕,立即顯示。如果確認需要退出SAS
for
Windows,單擊確定按鈕;如果需要繼續使用SAS
forWindows,單擊取消按鈕。62.
《試驗統計方法》教材例題的SAS程序及運行結果7t測驗方差分析直線回歸分析協方差分析t檢驗8樣本平均數與總體平均數的差異顯著性檢驗配對試驗資料的t檢驗非配對試驗資料的t檢驗樣本平均數與總體平均數的差異顯著性檢驗(例4.3)data
testt1;input
x@@;differ=x-27.5;cards;32.528.628.424.729.127.229.833.329.7;proc
means
n
meanstderr
t
prt;run;9運行結果The
MEANS
ProcedureVariable
N
Mean10StdErrort
ValuePr
>
|t|x
9
29.2555556
0.8623468
33.93
<.0001differ
9
1.7555556
0.8623468
2.04
0.0762配對試驗資料的t檢驗(例4.7)data
testt2;input
treat
x1
x2@@;differ=x1-x2;cards;12722.2 951.422866.71417.032675.91275.342169.22228.552253.92462.662415.12715.4;proc
means
mean
stderr
t
prt;var
differ;run;11運行結果The
MEANS
ProcedureAnalysis
Variable
:
differ12Mean Std
Error t
Value675.4666667
391.5253952
1.73Pr
>
|t|0.1451非配對試驗資料的t檢驗(例4.5)data
testt3;input
variety
x@@;cards;118.68120.67118.42118.00117.44115.95218.68223.22221.42219.00218.92;procttest;class
variety;var
x;run;13運行結果The
TTEST
ProcedureT-Tests14VariableMethodVariancesDFt
ValuePr
>
|t|xPooledEqual9-1.920.0868xSatterthwaiteUnequal7.51-1.870.1001Equality
ofVariancesVariablexMethodFolded
FNum
DF Den
DF F
Value4
5
1.66Pr
>
F0.5880方差分析15單因素完全隨機化試驗重復數相等資料單因素完全隨機化試驗重復數不等資料兩因素交叉分組試驗單獨觀測值資料兩因素交叉分組試驗有重復觀測值資料次級樣本含量相等的二因素系統分組資料單因素隨機區組設計試驗資料拉丁方設計試驗結果兩因素隨機區組設計試驗資料兩因素裂區設計試驗資料單因素完全隨機化試驗重復數相等資料的方差分析(教材【例5.3】)data
anova1;input
variety
x@@;cards;1121101141161121182 8210212214212216314316313316310315416418420416414416;procanova;class
variety;model
x=variety;means
variety/duncan;run;16運行結果17The
ANOVA
ProcedureClass
Level
InformationClass
Levels
Valuesvariety 4
1234Number
ofobservations
24The
ANOVA
ProcedureDependent
Variable:
xSourceDFSum
ofSquaresMean
SquareF
ValuePr
>
FModel367.166666722.38888893.430.0369Error20130.66666676.5333333Corrected
Total23197.8333333R-SquareCoeff
VarRoot
MSExMean0.33951118.149392.55603914.08333SourcevarietyDF Anova
SS3
67.16666667Mean
Square F
Value Pr
>
F22.38888889
3.43
0.036918The
ANOVA
ProcedureDuncan's
Multiple
Range
Test
for
xNOTE:
This
test
controls
the
Type
Icomparisonwiseerror
rate,
not
the
experimentwise
errorrate.Alpha
0.05Error
Degrees
of
Freedom
20Error
MeanSquare
6.53333319Number
ofMeans234Critical
Range3.0783.2313.328Means
with
the
same
letter
are
not
significantly
different.20Duncan
Grouping
Mean
N
varietyAA16.66764BA14.00063BABA13.66761BB12.00062單因素完全隨機化試驗重復數不等資料的方差分析(教材【例5.4】)data
anova2;input
variety
x@@;cards;121.5119.5120.0122.0118.0120.0216.0218.5217.0215.5220.0216.0319.0317.5320.0318.0317.0421.0418.5419.0420.0515.5518.0517.0516.0;proc
glm;class
variety;model
x=variety;means
variety/duncan;run;21運行結果22The
GLMProcedureClass
Level
InformationClass
Levels
Valuesvariety 5
12345Number
ofobservations
25The
GLMProcedureDependent
Variable:
xSource
DFSum
ofSquaresMean
SquareF
ValuePr
>
FModel
446.4983333311.624583335.990.0025Error
2038.841666671.94208333Corrected
Total
2485.34000000R-SquareCoeff
VarRoot
MSExMean0.5448607.5656161.39358718.42000SourceDFType
ISSMean
SquareF
ValuePr
>
Fvariety446.4983333311.624583335.990.0025SourceDFType
IIISSMean
SquareF
ValuePr
>
Fvariety446.4983333311.624583335.990.002523The
GLMProcedureDuncan's
Multiple
Range
Test
for
xNOTE:
This
test
controls
the
Type
I
comparisonwise
error
rate,
notthe
experimentwise
error
rate.Alpha
0.0524Error
Degrees
of
Freedom20Error
MeanSquare
1.942083Harmonic
Mean
of
Cell
Sizes
4.83871NOTE:
Cell
sizes
are
not
equal.Number
ofMeans2345Critical
Range1.8691.9622.0212.062Means
with
the
same
letter
are
not
significantly
different.Duncan
Grouping
Mean
N
variety25AA20.166761A19.625044ABA18.300053BB17.166762BB16.625045兩因素交叉分組試驗單獨觀測值資料的方差分析(教材【例5.5】)data
anova3;input
field
method
x@@;cards;117112731377219022902392315932703380417542804382516552605367618262866385;procanova;class
field
method;model
x=field
method;means
fieldmethod/duncan;run;26運行結果The
ANOVA
ProcedureClass
Level
InformationClass
Levels
Valuesfield
6 123456method
3 123Number
ofobservations
1827The
ANOVA
ProcedureDependent
Variable:
x28SourceSum
ofDF
Squares Mean
Square F
ValuePr
>
FModel71576.555556225.22222213.970.0002Error10161.22222216.122222Corrected
Total171737.777778R-SquareCoeff
VarRoot
MSExMean0.9072255.2221444.01524976.88889SourceDFAnovaSSMean
SquareF
ValuePr
>
Ffield51435.111111287.02222217.800.0001method2141.44444470.7222224.390.0429The
ANOVA
ProcedureDuncan's
Multiple
Range
Test
for
xNOTE:
This
test
controls
the
Type
I
comparisonwise
errorrate,not
the
experimentwise
errorrate.Alpha
0.05Error
Degrees
of
Freedom
10Error
MeanSquare
16.1222229Number
ofMeansCritical
Range2
3
4
5
67.305
7.633
7.827
7.951
8.033Means
with
the
same
letter
are
not
significantly
different.30Duncan
Grouping
Mean
N
fieldAA90.66732BA84.33336BBC79.00034CDC73.66731DDE69.66733EE64.00035The
ANOVA
ProcedureDuncan's
Multiple
Range
Test
for
xNOTE:
This
test
controls
the
Type
I
comparisonwise
errorrate,
not
the
experimentwise
errorrate.Alpha
0.05Error
Degrees
of
Freedom
10Error
MeanSquare
16.1222231Number
ofMeansCritical
Range2
35.165
5.398Means
with
the
same
letter
are
not
significantly
different.32Duncan
Grouping
Mean
N
methodAA80.50063BA76.50062BB73.66761兩因素交叉分組試驗有重復觀測值資料的方差分析(教材【例5.6】)data
anova4;input
density
fert
x@@;cards;112712261331143015251129122513301430152511261224133014311526112612291331143015242130222823312432252821302227233124342529212822262330243325282129222523322432252731333233333534353530313332343333343435293134323433373433353131323235333534353530;procanova;class
density
fert;model
x=density
fert
density*fert;means
densityfert/duncan;means
density*fert/lsd;run;33運行結果34The
ANOVA
ProcedureClass
Level
InformationClass
Levels
Valuesdensity 3
123fert 5
12345Number
of
observations
60The
ANOVA
Procedure35Dependent
Variable:
xSourceDFSum
ofSquaresMean
SquareF
ValuePr
>
FModel14573.333333340.952381033.51<.0001Error4555.00000001.2222222Corrected
Total59628.3333333R-SquareCoeff
VarRoot
MSExMean0.9124673.6647791.10554230.16667SourceDFAnovaSSMean
SquareF
ValuePr
>
Fdensity2315.8333333157.9166667129.20<.0001fert4207.166666751.791666742.38<.0001density*fert850.33333336.29166675.150.0001The
ANOVA
ProcedureDuncan's
Multiple
Range
Test
for
xNOTE:
This
test
controls
the
Type
Icomparisonwiseerror
rate,
not
the
experimentwise
errorrate.Alpha
0.05Error
Degrees
of
Freedom
45Error
MeanSquare
1.22222236Number
ofMeans23Critical
Range.7041.7405Means
with
the
same
letter
are
not
significantly
different.37Duncan
GroupingMeanNdensityA33.2500203B29.5000202C27.7500201The
ANOVA
ProcedureDuncan's
Multiple
Range
Test
for
xNOTE:
This
test
controls
the
Type
Icomparisonwiseerror
rate,
not
the
experimentwise
errorrate.Alpha
0.05Error
Degrees
of
Freedom
45Error
MeanSquare
1.22222238Number
ofMeans2345Critical
Range0.9090.9560.9871.009Means
with
the
same
letter
are
not
significantly
different.39Duncan
GroupingMeanNfertA32.4167124AA32.1667123B29.7500121C28.8333122The
ANOVA
ProcedureLevel
of Level
of--------------x--------------densityfertNMeanStd
Dev11427.00000001.4142135612426.00000002.1602469013430.50000000.5773502714430.25000000.5000000015425.00000000.8164965821429.25000000.9574271122426.50000001.2909944523431.00000000.8164965824432.75000000.9574271125428.00000000.8164965831433.00000000.8164965832434.00000000.8164965833435.00000001.6329931634434.25000000.9574271135430.00000000.8164965480次級樣本含量相等的二因素系統分組資料的方差分析【例5.7】data
anova5;input
plant
leaf
x@@;cards;1112.11112.11212.81212.82114.42114.42214.72214.53123.13123.43228.13228.8;procanova;class
plant
leaf;model
x=plant
leaf(plant);means
plant/duncan;run;41運行結果42The
ANOVA
ProcedureClass
Level
InformationClass
Levels
Valuesplant
3 123leaf
2 12Number
ofobservations
12The
ANOVA
ProcedureDependent
Variable:
x43SourceDFSum
ofSquaresMean
SquareF
ValuePr
>
FModel5444.350000088.87000001720.06<.0001Error60.31000000.0516667Corrected
Total11444.6600000R-SquareCoeff
VarRoot
MSExMean0.9993031.2914940.22730317.60000SourceDFAnovaSSMean
SquareF
ValuePr
>
Fplant2416.7800000208.39000004033.35<.0001leaf(plant)327.57000009.1900000177.87<.0001The
ANOVA
ProcedureDuncan's
Multiple
Range
Test
for
xNOTE:
This
test
controls
the
Type
I
comparisonwise
error
rate,
notthe
experimentwise
error
rate.Alpha
0.05Error
Degrees
of
Freedom
6Error
MeanSquare
0.05166744Number
ofMeansCritical
Range2
3.3933
.4076Means
with
the
same
letter
are
not
significantly
different.45Duncan
GroupingMeanNplantA25.850043B14.500042C12.450041單因素隨機區組設計試驗資料的分析(教材【例10.1】)data
anova6;input
variety$
block
x@@;cards;A
115.3B
118.0C
116.6D
116.4E
113.7F
117.0D
217.3F
217.6E
213.6C
217.8A
214.9B
217.6C
317.6A
316.2F
318.2B
318.6D
317.3E
313.9B
418.3D
417.8A
416.2E
414.0F
417.5C
417.8;proc
glm;class
variety
block;model
x=variety
block;means
variety/duncan;run;46運行結果The
GLMProcedureClass
Level
InformationClass
Levels
Valuesvariety
6 A
B
C
D
E
Fblock
4 1234Number
ofobservations
2447The
GLMProcedureDependent
Variable:
xSum
ofSource
DFSquaresMean
SquareF
ValuePr
>
FModel
855.058333336.8822916751.75<.0001Error
151.995000000.13300000Corrected
Total
2357.05333333R-SquareCoeff
VarRoot
MSExMean0.9650332.1925350.36469216.63333SourceDFType
ISSMean
SquareF
ValuePr
>
Fvariety552.3783333310.4756666778.76<.0001block32.680000000.893333336.720.004483The
GLMProcedureDuncan's
Multiple
Range
Test
for
xNOTE:
This
test
controls
the
Type
I
comparisonwise
errorrate,not
the
experimentwise
errorrate.Alpha
0.05Error
Degrees
of
Freedom
15Error
MeanSquare
0.13349Number
ofMeans
2Critical
range
.54963
4
5
6.5762
.5927
.6039
.6120Means
with
the
same
letter
are
not
significantly
different.50Duncan
GroupingMeanNvarietyA18.12504BB17.57504FBB17.45004CBB17.20004DC15.65004AD13.80004E拉丁方設計試驗結果的分析(教材【例10.3】)data
anova7;input
nd$row
col
x@@;cards;C
1110.1A
12 7.9B
13 9.8
E
14 7.1
D
15
9.6A
21 7.0D
2210.0E
23 7.0
C
24 9.7
B
25
9.1E
31 7.6C
32 9.7D
3310.0B
34 9.3
A
35
6.8D
4110.5B
42 9.6C
43 9.8
A
44 6.6
E
45
7.9B
51 8.9
E
52 8.9
A
53 8.6D
5410.6C
5510.1;proc
glm;class
nd
row
col;model
x=nd
row
col;means
nd/duncan;run;51運行結果The
GLMProcedureClass
Level
InformationClass
Levels
Valuesnd 5
A
B
C
D
Erow
5 12345col
5 12345Number
ofobservations
2552The
GLMProcedureDependent
Variable:
xSum
ofSource
DF
Squares Mean
Square F
Value Pr
>
FModel1235.503200002.9586000010.88
0.0001Error123.263200000.27193333Corrected
Total2438.76640000R-SquareCoeff
VarRoot
MSExMean0.9158245.8671500.5214728.888000Source
DF Type
ISS Mean
Square F
Value Pr
>
Fnd432.206400008.0516000029.61<.0001row42.170400000.542600002.000.1594col41.126400000.281600001.040.4286
53The
GLMProcedureDuncan's
Multiple
Range
Test
for
xNOTE:
This
test
controls
the
Type
I
comparisonwise
error
rate,
notthe
experimentwise
error
rate.Alpha
0.05Error
Degrees
of
Freedom
12Error
MeanSquare
0.27193354Number
ofMeans2345Critical
Range.7186.7522.7725.7860Means
with
the
same
letter
are
not
significantly
different.55Duncan
GroupingMeanNndA10.14005DAB
A9.88005CBB9.34005BC7.70005ECC7.38005A兩因素隨機區組設計試驗資料的方差分析(【例10.5】)data
anova7;input
a
b
blockx@@;cards;32110.012111.021119.041117.022120.011112.031119.042111.022219.011213.041216.012210.0322 8.021216.0422 9.031218.041315.0323 7.021312.031316.011313.012313.022317.0423
8.0;proc
glm;class
a
b
block;model
x=a
b
block
a*b;means
a
b
a*b/duncan;run;56運行結果The
GLMProcedureClass
Level
InformationClass
Levels
Valuesa41234b212block3123Number
ofobservations
2457The
GLMProcedureDependent
Variable:
xSource
DFSum
ofSquaresMean
SquareF
ValuePr
>
FModel
9332.625000036.958333317.06<.0001Error
1430.33333332.1666667Corrected
Total
23362.9583333R-SquareCoeff
VarRoot
MSExMean0.91642810.737701.47196013.70833SourceDFType
ISSMean
SquareF
ValuePr
>
Fa398.791666732.930555615.200.0001b177.041666777.041666735.56<.0001block220.333333310.16666674.690.0276a*b3
136.4583333
45.4861111
20.99
<.0508
01The
GLMProcedureDuncan's
Multiple
Range
Test
for
xNOTE:
This
test
controls
the
Type
Icomparisonwiseerror
rate,
not
the
experimentwise
errorrate.Alpha
0.05Error
Degrees
of
Freedom
14Error
MeanSquare
2.166667Number
ofMeans234Critical
Range1.8231.9101.96459Means
with
the
same
letter
are
not
significantly
different.60Duncan
GroupingMeanNaA17.166762B13.000063BB12.666764BB12.000061The
GLMProcedureDuncan's
Multiple
Range
Test
for
xNOTE:
This
test
controls
the
Type
Icomparisonwiseerror
rate,
not
the
experimentwise
errorrate.Alpha
0.05Error
Degrees
of
Freedom
14Error
MeanSquare
2.166667Number
ofMeans
2Critical
Range
1.28961Means
with
the
same
letter
are
not
significantly
different.62Duncan
GroupingMeanNbA15.5000121B11.9167122The
GLMProcedure63Level
ofabLevel
ofN--------------x--------------Mean Std
Dev11312.66666670.5773502712311.33333331.5275252321315.66666673.5118845822318.66666671.5275252331317.66666671.527525233238.33333331.5275252341316.00000001.000000004239.33333331.52752523兩因素裂區設計試驗資料方差分析(教材【例10.6】)data
anova8;input
a
b
blockx@@;cards;11139.811238.511339.112143.312243.512346.513155.913269.713363.814152.614257.514357.721127.521227.121326.822144.822248.822347.623148.723244.523348.624141.724237.224336.531126.531225.831326.332135.432234.532336.333142.033244.333343.634139.134239.634344.3;proc
glm;class
a
b
block;model
x=block
a
a*block
b
a*b;means
a
b
a*b/duncan;64run;運行結果The
GLMProcedureClass
Level
InformationClass
Levels
Valuesa3123b41234block3123Number
ofobservations
3665The
GLMProcedureDependent
Variable:
xSum
ofSource
DFSquaresMean
SquareF
ValuePr
>
FModel
173765.737222221.51395433.39<.0001Error
18119.4150006.634167Corrected
Total
353885.152222R-SquareCoeff
VarRoot
MSExMean0.9692646.0787172.57568842.37222SourceDFType
ISSMean
SquareF
ValuePr
>
Fblock217.1372228.5686111.290.2991a21309.723889654.86194498.71<.0001a*block440.50111110.1252781.530.2368b31975.956667658.65222299.28<.0001a*b6422.41833370.40305610.61<66.0001The
GLMProcedureDuncan's
Multiple
Range
Test
for
xNOTE:
This
test
controls
the
Type
Icomparisonwiseerror
rate,
not
the
experimentwise
errorrate.Alpha
0.05Error
Degrees
of
Freedom
18Error
MeanSquare
6.63416767Number
ofMeans23Critical
Range2.2092.318Means
with
the
same
letter
are
not
significantly
different.68Duncan
GroupingMeanNaA50.658121B39.983122C36.475123The
GLMProcedureDuncan's
Multiple
Range
Test
for
xNOTE:
This
test
controls
the
Type
Icomparisonwiseerror
rate,
not
the
experimentwise
errorrate.Alpha
0.05Error
Degrees
of
Freedom
18Error
MeanSquare
6.63416769Number
ofMeans234Critical
Range2.5512.6762.756Means
with
the
same
letter
are
not
significantly
different.70Duncan
GroupingMeanNbA51.23393B45.13394C42.30092D30.82291The
GLMProcedure71Level
ofaLevel
ofbN--------------x--------------Mean Std
Dev11339.13333330.6506407112344.43333331.7925772913363.13333336.9241124614355.93333332.8884828821327.13333330.3511884622347.06666672.0526405823347.26666672.3965252624338.46666672.8219378731326.20000000.3605551332335.40000000.9000000033343.30000001.1789826134341.00000002.86879766直線回歸分析(教材【例7.1】)data
reg1;input
xy@@;cards;35.51234.11631.7940.3236.8740.2331.71339.2944.2-1;proc
reg
corr;model
y=x;run;72運行結果73The
REGProcedureCorrelationVariablexyx1.0000-0.8371y-0.83711.0000The
REGProcedure74Model:
MODEL1Dependent
Variable:
yAnalysis
ofVarianceSourceDFSum
ofSquaresMeanSquareF
ValuePr
>
FModel1174.88878174.8887816.400.0049Error774.6667810.66668Corrected
Total8249.55556Root
MSE3.26599R-Square0.7008Dependent
Mean7.77778AdjR-Sq0.6581Coeff
Var41.99128Parameter
Estimates75VariableParameter
StandardDF
Estimate
Error t
Value Pr
>
|t|Interceptx1
48.54932
10.12779
4.791 -1.09962
0.27157 -4.050.00200.0049協方差分析(教材【例9.3】)data
anaocov1;input
treat
x
y@@;cards;13689 1308012674123801268513068 12073119681208011658228642278122773224672257722367220642186521759220573285533362326583225832366320553226032371318553174843252423584276442362427544285442055424444195141751;proc
glm;class
treat;model
y=x
treat/solution;means
treat/duncan;lsmeans
treat/stderr
pdiff
tdiff;run;76運行結果77The
GLMProcedureClass
Level
InformationClass
Levels
Valuestreat 4
1234Number
ofobserv
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 3788-2020梨枯梢病監測與檢測技術規程
- DB32/T 3609-2019安全生產責任保險服務基本規范
- DB32/T 3546-2019血站消毒衛生規范
- DB32/T 3523-2019海濱木槿育苗技術規程
- DB31/T 596-2012地鐵合理通風技術管理要求
- DB31/T 435-2021分布式供能系統溴化鋰吸收式冷(熱)水機組安全和能效技術要求
- DB31/T 419-2015激光打印機用再制造鼓粉盒組件技術規范
- DB31/T 1289-2021戶外廣告和招牌設施安全檢測要求
- DB31/T 1257-2020瘧疾疫點處置規范
- DB31/T 1182-2019特種設備隱患排查治理通則
- 線下陪玩合同模板
- 初中英語閱讀理解專項練習26篇(含答案)
- 國家開放大學《理工英語4》綜合練習參考答案
- 鐵路安檢工作總結
- 發動機節能減排技術研究
- 腰椎間盤脫出伴坐骨神經痛的健康宣教
- 談心談話記錄2024年簡短
- 陜09J01 建筑用料及做法圖集
- 疼痛科護士對疼痛科護理質量提升的策略與方法
- 會員維護培訓課件
- 郵政網點主題營銷活動
評論
0/150
提交評論