湖南省岳陽市三校2023-2024學年數學高三上期末達標檢測模擬試題含解析_第1頁
湖南省岳陽市三校2023-2024學年數學高三上期末達標檢測模擬試題含解析_第2頁
湖南省岳陽市三校2023-2024學年數學高三上期末達標檢測模擬試題含解析_第3頁
湖南省岳陽市三校2023-2024學年數學高三上期末達標檢測模擬試題含解析_第4頁
湖南省岳陽市三校2023-2024學年數學高三上期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省岳陽市三校2023-2024學年數學高三上期末達標檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設、分別是定義在上的奇函數和偶函數,且,則()A. B.0 C.1 D.32.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.43.定義在上的奇函數滿足,若,,則()A. B.0 C.1 D.24.將函數圖象向右平移個單位長度后,得到函數的圖象關于直線對稱,則函數在上的值域是()A. B. C. D.5.如圖,在△ABC中,點M是邊BC的中點,將△ABM沿著AM翻折成△AB'M,且點B'不在平面AMC內,點P是線段B'C上一點.若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經過△AB'CA.重心 B.垂心 C.內心 D.外心6.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.6427.設函數在上可導,其導函數為,若函數在處取得極大值,則函數的圖象可能是()A. B.C. D.8.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.9.已知復數滿足(是虛數單位),則=()A. B. C. D.10.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.11.已知函數,則()A.2 B.3 C.4 D.512.已知,函數,若函數恰有三個零點,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在編號為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機抽取其中的三張,則抽取的三張卡片編號之和是偶數的概率為________.14.函數f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_____.15.已知等比數列的前項和為,,且,則__________.16.已知的展開式中項的系數與項的系數分別為135與,則展開式所有項系數之和為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)當時,解不等式;(2)設,且當時,不等式有解,求實數的取值范圍.18.(12分)某地為改善旅游環境進行景點改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點,拋物線的對稱軸垂直于l3,且交l3于M

),在堤岸線l3上的E,F兩處建造建筑物,其中E,F到M的距離為1

(百米),且F恰在B的正對岸(即BF⊥l3).(1)在圖②中建立適當的平面直角坐標系,并求棧道AB的方程;(2)游客(視為點P)在棧道AB的何處時,觀測EF的視角(∠EPF)最大?請在(1)的坐標系中,寫出觀測點P的坐標.19.(12分)某貧困地區幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應開鑿的直線穿山隧道,為進一步改善山區的交通現狀,計劃修建一條連接兩條公路和山區邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標系,如圖所示,山區邊界曲線為,設公路與曲線相切于點,的橫坐標為.(1)當為何值時,公路的長度最短?求出最短長度;(2)當公路的長度最短時,設公路交軸,軸分別為,兩點,并測得四邊形中,,,千米,千米,求應開鑿的隧道的長度.20.(12分)已知函數.(1)討論的零點個數;(2)證明:當時,.21.(12分)在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)若直線與曲線交于、兩點,求的面積.22.(10分)設函數.(1)若,時,在上單調遞減,求的取值范圍;(2)若,,,求證:當時,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

先根據奇偶性,求出的解析式,令,即可求出。【詳解】因為、分別是定義在上的奇函數和偶函數,,用替換,得,化簡得,即令,所以,故選C。【點睛】本題主要考查函數性質奇偶性的應用。2、A【解析】

由傾斜角的余弦值,求出正切值,即的關系,求出雙曲線的離心率.【詳解】解:設雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題3、C【解析】

首先判斷出是周期為的周期函數,由此求得所求表達式的值.【詳解】由已知為奇函數,得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數的奇偶性和周期性,屬于基礎題.4、D【解析】

由題意利用函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,求得結果.【詳解】解:把函數圖象向右平移個單位長度后,可得的圖象;再根據得到函數的圖象關于直線對稱,,,,函數.在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,屬于中檔題.5、A【解析】

根據題意P到兩個平面的距離相等,根據等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點.故選:A.【點睛】本題考查了二面角,等體積法,意在考查學生的計算能力和空間想象能力.6、A【解析】

設球心為O,三棱柱的上底面ΔA1B1C1的內切圓的圓心為O1,該圓與邊B【詳解】如圖,設三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設球心為O,則由球的幾何知識得ΔOO1M所以OM=2即球O的半徑為25所以球O的體積為43故選A.【點睛】本題考查與球有關的組合體的問題,解答本題的關鍵有兩個:(1)構造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內求出球的半徑,這是解決與球有關的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內切圓的半徑r=a+b-c7、B【解析】

由題意首先確定導函數的符號,然后結合題意確定函數在區間和處函數的特征即可確定函數圖像.【詳解】函數在上可導,其導函數為,且函數在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【點睛】根據函數取得極大值,判斷導函數在極值點附近左側為正,右側為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.8、B【解析】

首先由三視圖還原幾何體,進一步求出幾何體的棱長.【詳解】解:根據三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.【點睛】本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎題.9、A【解析】

把已知等式變形,再由復數代數形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.【點睛】本題考查復數代數形式的乘除運算,考查復數的基本概念,是基礎題.10、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.11、A【解析】

根據分段函數直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數計算,意在考查學生的計算能力.12、C【解析】

當時,最多一個零點;當時,,利用導數研究函數的單調性,根據單調性畫函數草圖,根據草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數遞增,令得,,函數遞減;函數最多有2個零點;根據題意函數恰有3個零點函數在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數,故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求出所有的基本事件個數,再求出“抽取的三張卡片編號之和是偶數”這一事件包含的基本事件個數,利用古典概型的概率計算公式即可算出結果.【詳解】一次隨機抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個,其中“抽取的三張卡片編號之和是偶數”包含6個基本事件,因此“抽取的三張卡片編號之和是偶數”的概率為:.故答案為:.【點睛】本題考查了古典概型及其概率計算公式,屬于基礎題.14、x﹣y=0.【解析】

先將x=1代入函數式求出切點縱坐標,然后對函數求導數,進一步求出切線斜率,最后利用點斜式寫出切線方程.【詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【點睛】本題考查利用導數求切線方程的基本方法,利用切點滿足的條件列方程(組)是關鍵.同時也考查了學生的運算能力,屬于基礎題.15、【解析】

由題意知,繼而利用等比數列的前項和為的公式代入求值即可.【詳解】解:由題意知,所以.故答案為:.【點睛】本題考查了等比數列的通項公式和求和公式,屬于中檔題.16、64【解析】

由題意先求得的值,再令求出展開式中所有項的系數和.【詳解】的展開式中項的系數與項的系數分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數之和為.故答案為:64【點睛】本題考查了二項式定理,考查了賦值法求多項式展開式的系數和,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)通過分類討論去掉絕對值符號,進而解不等式組求得結果;(2)將不等式整理為,根據能成立思想可知,由此構造不等式求得結果.【詳解】(1)當時,可化為,由,解得;由,解得;由,解得.綜上所述:所以原不等式的解集為.(2),,,,有解,,即,又,,實數的取值范圍是.【點睛】本題考查絕對值不等式的求解、根據不等式有解求解參數范圍的問題;關鍵是明確對于不等式能成立的問題,通過分離變量的方式將問題轉化為所求參數與函數最值之間的比較問題.18、(1)見解析,,x[0,1];(2)P(,)時,視角∠EPF最大.【解析】

(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系,設出方程,通過點的坐標可求方程;(2)設出的坐標,表示出,利用基本不等式求解的最大值,從而可得觀測點P的坐標.【詳解】(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系由題意知:B(1,0.5),設拋物線方程為代入點B得:p=1,故方程為,x[0,1];(2)設P(,),t[0,],作PQ⊥l3于Q,記∠EPQ=,∠FPQ=,,令,,則:,當且僅當即,即,即時取等號;故P(,)時視角∠EPF最大,答:P(,)時,視角∠EPF最大.【點睛】本題主要考查圓錐曲線的實際應用,理解題意,構建合適的模型是求解的關鍵,涉及最值問題一般利用基本不等式或者導數來進行求解,側重考查數學運算的核心素養.19、(1)當時,公路的長度最短為千米;(2)(千米).【解析】

(1)設切點的坐標為,利用導數的幾何意義求出切線的方程為,根據兩點間距離得出,構造函數,利用導數求出單調性,從而得出極值和最值,即可得出結果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據勾股定理即可求出的長度.【詳解】(1)由題可知,設點的坐標為,又,則直線的方程為,由此得直線與坐標軸交點為:,則,故,設,則.令,解得=10.當時,是減函數;當時,是增函數.所以當時,函數有極小值,也是最小值,所以,此時.故當時,公路的長度最短,最短長度為千米.(2)在中,,,所以,所以,根據正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【點睛】本題考查利用導數解決實際的最值問題,涉及構造函數法以及利用導數研究函數單調性和極值,還考查正余弦定理的實際應用,還考查解題分析能力和計算能力.20、(1)見解析(2)見解析【解析】

(1)求出,分別以當,,時,結合函數的單調性和最值判斷零點的個數.(2)令,結合導數求出;同理可求出滿足,從而可得,進而證明.【詳解】解析:(1),,當時,,單調遞減,,,此時有1個零點;當時,無零點;當時,由得,由得,∴在單調遞減,在單調遞增,∴在處取得最小值,若,則,此時沒有零點;若,則,此時有1個零點;若,則,,求導易得,此時在,上各有1個零點.綜上可得時,沒有零點,或時,有1個零點,時,有2個零點.(2)令,則,當時,;當時,,∴.令,則,當時,,當時,,∴,∴,,∴,即.【點睛】本題考查了導數判斷函數零

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論