




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省馬鞍山市含山中學2024屆高三3月教學質量檢測試題數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}2.用電腦每次可以從區間內自動生成一個實數,且每次生成每個實數都是等可能性的.若用該電腦連續生成3個實數,則這3個實數都小于的概率為()A. B. C. D.3.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.4.正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為()A. B. C. D.5.已知隨機變量服從正態分布,且,則()A. B. C. D.6.若集合,,則A. B. C. D.7.甲乙兩人有三個不同的學習小組,,可以參加,若每人必須參加并且僅能參加一個學習小組,則兩人參加同一個小組的概率為()A.B.C.D.8.已知拋物線y2=4x的焦點為F,拋物線上任意一點P,且PQ⊥y軸交y軸于點Q,則的最小值為()A. B. C.l D.19.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.復數(為虛數單位),則等于()A.3 B.C.2 D.11.地球上的風能取之不盡,用之不竭.風能是淸潔能源,也是可再生能源.世界各國致力于發展風力發電,近10年來,全球風力發電累計裝機容量連年攀升,中國更是發展迅猛,2014年累計裝機容量就突破了,達到,中國的風力發電技術也日臻成熟,在全球范圍的能源升級換代行動中體現出大國的擔當與決心.以下是近10年全球風力發電累計裝機容量與中國新增裝機容量圖.根據所給信息,正確的統計結論是()A.截止到2015年中國累計裝機容量達到峰值B.10年來全球新增裝機容量連年攀升C.10年來中國新增裝機容量平均超過D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過12.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________.14.若存在直線l與函數及的圖象都相切,則實數的最小值為___________.15.若,且,則的最小值是______.16.(5分)函數的定義域是____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)數列的前項和為,且.數列滿足,其前項和為.(1)求數列與的通項公式;(2)設,求數列的前項和.18.(12分)已知函數(1)若,試討論的單調性;(2)若,實數為方程的兩不等實根,求證:.19.(12分)已知圓上有一動點,點的坐標為,四邊形為平行四邊形,線段的垂直平分線交于點.(Ⅰ)求點的軌跡的方程;(Ⅱ)過點作直線與曲線交于兩點,點的坐標為,直線與軸分別交于兩點,求證:線段的中點為定點,并求出面積的最大值.20.(12分)設函數,(1)當,,求不等式的解集;(2)已知,,的最小值為1,求證:.21.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.22.(10分)在平面直角坐標系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】
根據集合的并集、補集的概念,可得結果.【題目詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【題目點撥】本題考查的是集合并集,補集的概念,屬基礎題.2、C【解題分析】
由幾何概型的概率計算,知每次生成一個實數小于1的概率為,結合獨立事件發生的概率計算即可.【題目詳解】∵每次生成一個實數小于1的概率為.∴這3個實數都小于1的概率為.故選:C.【題目點撥】本題考查獨立事件同時發生的概率,考查學生基本的計算能力,是一道容易題.3、C【解題分析】
畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可,【題目詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【題目點撥】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關鍵.4、D【解題分析】
如圖所示,設的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質和線面垂直的性質可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【題目詳解】如圖所示,設的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【題目點撥】本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.5、C【解題分析】
根據在關于對稱的區間上概率相等的性質求解.【題目詳解】,,,.故選:C.【題目點撥】本題考查正態分布的應用.掌握正態曲線的性質是解題基礎.隨機變量服從正態分布,則.6、C【解題分析】
解一元次二次不等式得或,利用集合的交集運算求得.【題目詳解】因為或,,所以,故選C.【題目點撥】本題考查集合的交運算,屬于容易題.7、A【解題分析】依題意,基本事件的總數有種,兩個人參加同一個小組,方法數有種,故概率為.8、A【解題分析】
設點,則點,,利用向量數量積的坐標運算可得,利用二次函數的性質可得最值.【題目詳解】解:設點,則點,,,,當時,取最小值,最小值為.故選:A.【題目點撥】本題考查拋物線背景下的向量的坐標運算,考查學生的計算能力,是基礎題.9、B【解題分析】
根據誘導公式化簡再分析即可.【題目詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【題目點撥】本題考查充分與必要條件的判定以及誘導公式的運用,屬于基礎題.10、D【解題分析】
利用復數代數形式的乘除運算化簡,從而求得,然后直接利用復數模的公式求解.【題目詳解】,所以,,故選:D.【題目點撥】該題考查的是有關復數的問題,涉及到的知識點有復數的乘除運算,復數的共軛復數,復數的模,屬于基礎題目.11、D【解題分析】
先列表分析近10年全球風力發電新增裝機容量,再結合數據研究單調性、平均值以及占比,即可作出選擇.【題目詳解】年份2009201020112012201320142015201620172018累計裝機容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機容量39.140.645.135.851.863.854.953.551.4中國累計裝機裝機容量逐年遞增,A錯誤;全球新增裝機容量在2015年之后呈現下降趨勢,B錯誤;經計算,10年來中國新增裝機容量平均每年為,選項C錯誤;截止到2015年中國累計裝機容量,全球累計裝機容量,占比為,選項D正確.故選:D【題目點撥】本題考查條形圖,考查基本分析求解能力,屬基礎題.12、B【解題分析】
試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題二、填空題:本題共4小題,每小題5分,共20分。13、3【解題分析】由已知中的三視圖可得該幾何體是一個以直角梯形為底面,梯形上下邊長為和,高為,如圖所示,平面,所以底面積為,幾何體的高為,所以其體積為.點睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據三視圖的規則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線.在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結合側視圖進行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數量關系,利用相應體積公式求解.14、【解題分析】
設直線l與函數及的圖象分別相切于,,因為,所以函數的圖象在點處的切線方程為,即,因為,所以函數的圖象在點處的切線方程為,即,因為存在直線l與函數及的圖象都相切,所以,所以,令,設,則,當時,,函數單調遞減;當時,,函數單調遞增,所以,所以實數的最小值為.15、8【解題分析】
利用的代換,將寫成,然后根據基本不等式求解最小值.【題目詳解】因為(即取等號),所以最小值為.【題目點撥】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.16、【解題分析】
要使函數有意義,則,即,解得,故函數的定義域是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解題分析】
(1)令可求得的值,令,由得出,兩式相減可推導出數列為等比數列,確定該數列的公比,利用等比數列的通項公式可求得數列的通項公式,再利用對數的運算性質可得出數列的通項公式;(2)運用等差數列的求和公式,運用數列的分組求和和裂項相消求和,化簡可得.【題目詳解】(1)當時,,所以;當時,,得,即,所以,數列是首項為,公比為的等比數列,.;(2)由(1)知數列是首項為,公差為的等差數列,.,.所以.【題目點撥】本題考查數列的遞推式的運用,注意結合等比數列的定義和通項公式,考查數列的求和方法:分組求和法和裂項相消求和,考查運算能力,屬于中檔題.18、(1)答案不唯一,具體見解析(2)證明見解析【解題分析】
(1)根據題意得,分與討論即可得到函數的單調性;(2)根據題意構造函數,得,參變分離得,分析不等式,即轉化為,設,再構造函數,利用導數得單調性,進而得證.【題目詳解】(1)依題意,當時,,①當時,恒成立,此時在定義域上單調遞增;②當時,若,;若,;故此時的單調遞增區間為,單調遞減區間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設),即證,令,設,則,在單調遞減,即,從而有.方法2:由得令,則,當時,時,故在上單調遞增,在上單調遞減,不妨設,則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導)在上單調遞減,,故對于時,總有.由此得【題目點撥】本題考查了函數的單調性、最值問題,考查導數的應用以及分類討論思想,轉化思想,屬于難題.19、(Ⅰ);(Ⅱ)4.【解題分析】
(Ⅰ)先畫出圖形,結合垂直平分線和平行四邊形性質可得為一定值,,故可確定點軌跡為橢圓(),進而求解;(Ⅱ)設直線方程為,點坐標分別為,聯立直線與橢圓方程得,,分別由點斜式求得直線KA的方程為,令得,同理得,由結合韋達定理即可求解,而,當重合交于點時,可求最值;【題目詳解】(Ⅰ),所以點的軌跡是一個橢圓,且長軸長,半焦距,所以,軌跡的方程為.(Ⅱ)當直線的斜率為0時,與曲線無交點.當直線的斜率不為0時,設過點的直線方程為,點坐標分別為.直線與橢圓方程聯立得消去,得.則,.直線KA的方程為.令得.同理可得.所以.所以的中點為.不妨設點在點的上方,則.【題目點撥】本題考查根據橢圓的定義求橢圓的方程,橢圓中的定點定值問題,屬于中檔題20、(1)或;(2)證明見解析【解題分析】
(1)將化簡,分類討論即可;(2)由(1)得,,展開后再利用基本不等式即可.【題目詳解】(1)當時,,所以或或解得或,因此不等式的解集的或(2)根據,當且僅當時,等式成立.【題目點撥】本題考查絕對值不等式的解法、利用基本不等式證明不等式問題,考查學生基本的計算能力,是一道基礎題.21、(1)見解析;(2)【解題分析】
(Ⅰ)證明:過點作于點,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點是的中點,連結,則∴平面∴∥,∴四邊形是矩形設,得:,又∵,∴,從而,過作于點,則∴是與平面所成角∴,∴與平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三級數據庫考試知識網絡試題及答案
- 學校扶貧部門管理制度
- 公路工程多媒體展示技術試題及答案
- 公司疫情門衛管理制度
- 庫房存儲安全管理制度
- 安全生產瓦斯管理制度
- 安全監測設施管理制度
- 工廠配件領用管理制度
- 公路交通組織設計試題及答案
- 前臺工作安全管理制度
- 《摩擦力》說課課件(全國獲獎實驗說課案例)
- 個人信用報告異議申請表
- 統計學學習指導書(完整版)
- 初中數學 北師大版 七年級下冊 變量之間的關系 用圖象表示的變量間關系 課件
- 2023年藝術與審美期末試卷答案參考
- 電氣工程竣工驗收表格模板
- Teladoc全球領先的遠程醫療服務商
- 制程品質檢驗流程圖
- 必修地球圈層結構通用PPT課件
- 物聯網體系結構PPT課件
- 80噸吊車性能表
評論
0/150
提交評論