貴州省石阡縣2024屆中考猜題數學試卷含解析_第1頁
貴州省石阡縣2024屆中考猜題數學試卷含解析_第2頁
貴州省石阡縣2024屆中考猜題數學試卷含解析_第3頁
貴州省石阡縣2024屆中考猜題數學試卷含解析_第4頁
貴州省石阡縣2024屆中考猜題數學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省石阡縣2024屆中考猜題數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.不等式組1-x≤0,3x-6<0A. B. C. D.2.如圖是由四個小正方體疊成的一個幾何體,它的左視圖是()A. B. C. D.3.下列計算正確的是()A.a2+a2=a4 B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b4.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角5.全球芯片制造已經進入10納米到7納米器件的量產時代.中國自主研發的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設備之一,7納米就是0.000000007米.數據0.000000007用科學記數法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣106.甲、乙兩位同學做中國結,已知甲每小時比乙少做6個,甲做30個所用的時間與乙做45個所用的時間相等,求甲每小時做中國結的個數.如果設甲每小時做x個,那么可列方程為()A.= B.=C.= D.=7.按一定規律排列的一列數依次為:﹣,1,﹣,、﹣、…,按此規律,這列數中的第100個數是()A.﹣ B. C. D.8.下列運算正確的是()A.a3?a2=a6 B.a﹣2=﹣ C.3﹣2= D.(a+2)(a﹣2)=a2+49.如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規作圖的痕跡,則下列結論錯誤的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC10.一次函數y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數y2=2x+3(﹣1<x<2)的圖象記作G2,對于這兩個圖象,有以下幾種說法:①當G1與G2有公共點時,y1隨x增大而減??;②當G1與G2沒有公共點時,y1隨x增大而增大;③當k=2時,G1與G2平行,且平行線之間的距離為65下列選項中,描述準確的是()A.①②正確,③錯誤 B.①③正確,②錯誤C.②③正確,①錯誤 D.①②③都正確11.某校航模小分隊年齡情況如表所示,則這12名隊員年齡的眾數、中位數分別是()年齡(歲)1213141516人數12252A.2,14歲 B.2,15歲 C.19歲,20歲 D.15歲,15歲12.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.我國古代數學著作《九章算術》卷七有下列問題:“今有共買物,人出八,盈三;人出七,不足四.問人數、物價幾何?”意思是:現在有幾個人共同出錢去買件物品,如果每人出8錢,則剩余3錢;如果每人出7錢,則差4錢.問有多少人,物品的價格是多少?設有人,則可列方程為__________.14.從﹣1,2,3,﹣6這四個數中任選兩數,分別記作m,n,那么點(m,n)在函數圖象上的概率是.15.如圖,已知⊙O1與⊙O2相交于A、B兩點,延長連心線O1O2交⊙O2于點P,聯結PA、PB,若∠APB=60°,AP=6,那么⊙O2的半徑等于________.16.同時擲兩個質地均勻的骰子,觀察向上一面的點數,兩個骰子的點數相同的概率為.17.化簡二次根式的正確結果是_____.18.月球的半徑約為1738000米,1738000這個數用科學記數法表示為___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,某校數學興趣小組要測量大樓AB的高度,他們在點C處測得樓頂B的仰角為32°,再往大樓AB方向前進至點D處測得樓頂B的仰角為48°,CD=96m,其中點A、D、C在同一直線上.求AD的長和大樓AB的高度(結果精確到2m)參考數據:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,≈2.7320.(6分)如圖,將等邊△ABC繞點C順時針旋轉90°得到△EFC,∠ACE的平分線CD交EF于點D,連接AD、AF.求∠CFA度數;求證:AD∥BC.21.(6分)孔明同學對本校學生會組織的“為貧困山區獻愛心”自愿捐款活動進行抽樣調查,得到了一組學生捐款情況的數據.如圖是根據這組數據繪制的統計圖,圖中從左到右各長方形的高度之比為3:4:5:10:8,又知此次調查中捐款30元的學生一共16人.孔明同學調查的這組學生共有_______人;這組數據的眾數是_____元,中位數是_____元;若該校有2000名學生,都進行了捐款,估計全校學生共捐款多少元?22.(8分)在平面直角坐標系xOy中,點A在x軸的正半軸上,點B的坐標為(0,4),BC平分∠ABO交x軸于點C(2,0).點P是線段AB上一個動點(點P不與點A,B重合),過點P作AB的垂線分別與x軸交于點D,與y軸交于點E,DF平分∠PDO交y軸于點F.設點D的橫坐標為t.(1)如圖1,當0<t<2時,求證:DF∥CB;(2)當t<0時,在圖2中補全圖形,判斷直線DF與CB的位置關系,并證明你的結論;(3)若點M的坐標為(4,-1),在點P運動的過程中,當△MCE的面積等于△BCO面積的倍時,直接寫出此時點E的坐標.23.(8分)嘉興市2010~2014年社會消費品零售總額及增速統計圖如下:請根據圖中信息,解答下列問題:(1)求嘉興市2010~2014年社會消費品零售總額增速這組數據的中位數.(2)求嘉興市近三年(2012~2014年)的社會消費品零售總額這組數據的平均數.(3)用適當的方法預測嘉興市2015年社會消費品零售總額(只要求列出算式,不必計算出結果).24.(10分)如圖,在平面直角坐標系中,拋物線與x軸交于點A、B,與y軸交于點C,直線y=x+4經過點A、C,點P為拋物線上位于直線AC上方的一個動點.(1)求拋物線的表達式;(2)如圖,當CP//AO時,求∠PAC的正切值;(3)當以AP、AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上時,求出此時點P的坐標.25.(10分)閱讀材料,解答下列問題:神奇的等式當a≠b時,一般來說會有a2+b≠a+b2,然而當a和b是特殊的分數時,這個等式卻是成立的例如:()2+=+,()2+=+,()2+=+()2,…()2+=+()2,…(1)特例驗證:請再寫出一個具有上述特征的等式:;(2)猜想結論:用n(n為正整數)表示分數的分母,上述等式可表示為:;(3)證明推廣:①(2)中得到的等式一定成立嗎?若成立,請證明;若不成立,說明理由;②等式()2+=+()2(m,n為任意實數,且n≠0)成立嗎?若成立,請寫出一個這種形式的等式(要求m,n中至少有一個為無理數);若不成立,說明理由.26.(12分)我們把兩條中線互相垂直的三角形稱為“中垂三角形”.例如圖1,圖2,圖1中,AF,BE是△ABC的中線,AF⊥BE,垂足為P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.特例探索(1)如圖1,當∠ABE=45°,c=時,a=,b=;如圖2,當∠ABE=10°,c=4時,a=,b=;歸納證明(2)請你觀察(1)中的計算結果,猜想a2,b2,c2三者之間的關系,用等式表示出來,請利用圖1證明你發現的關系式;拓展應用(1)如圖4,在□ABCD中,點E,F,G分別是AD,BC,CD的中點,BE⊥EG,AD=,AB=1.求AF的長.27.(12分)一名在校大學生利用“互聯網+”自主創業,銷售一種產品,這種產品成本價10元/件,已知銷售價不低于成本價,且物價部門規定這種產品的銷售價不高于16元/件,市場調查發現,該產品每天的銷售量y(件)與銷售價x(元/件)之間的函數關系如圖所示.(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】試題分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在數軸上表示不等式的解集是:,故選D.考點:1.在數軸上表示不等式的解集;2.解一元一次不等式組.2、A【解題分析】試題分析:如圖是由四個小正方體疊成的一個幾何體,它的左視圖是.故選A.考點:簡單組合體的三視圖.3、D【解題分析】

各項計算得到結果,即可作出判斷.【題目詳解】A、原式=2a2,不符合題意;B、原式=-a6,不符合題意;C、原式=a2+2ab+b2,不符合題意;D、原式=-4b,符合題意,故選:D.【題目點撥】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.4、B【解題分析】

利用對頂角的性質、平方根的性質、銳角和鈍角的定義分別判斷后即可確定正確的選項.【題目詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.【題目點撥】考查了命題與定理的知識,解題的關鍵是了解對頂角的性質、平方根的性質、銳角和鈍角的定義,難度不大.5、C【解題分析】

本題根據科學記數法進行計算.【題目詳解】因為科學記數法的標準形式為a×(1≤|a|≤10且n為整數),因此0.000000007用科學記數法法可表示為7×,故選C.【題目點撥】本題主要考察了科學記數法,熟練掌握科學記數法是本題解題的關鍵.6、A【解題分析】

設甲每小時做x個,乙每小時做(x+6)個,根據甲做30個所用時間與乙做45個所用時間相等即可列方程.【題目詳解】設甲每小時做x個,乙每小時做(x+6)個,根據甲做30個所用時間與乙做45個所用時間相等可得=.故選A.【題目點撥】本題考查了分式方程的應用,找到關鍵描述語,正確找出等量關系是解決問題的關鍵.7、C【解題分析】

根據按一定規律排列的一列數依次為:,1,,,,…,可知符號規律為奇數項為負,偶數項為正;分母為3、7、9、……,型;分子為型,可得第100個數為.【題目詳解】按一定規律排列的一列數依次為:,1,,,,…,按此規律,奇數項為負,偶數項為正,分母為3、7、9、……,型;分子為型,可得第n個數為,∴當時,這個數為,故選:C.【題目點撥】本題屬于規律題,準確找出題目的規律并將特殊規律轉化為一般規律是解決本題的關鍵.8、C【解題分析】

直接利用同底數冪的乘除運算法則、負指數冪的性質、二次根式的加減運算法則、平方差公式分別計算即可得出答案.【題目詳解】A、a3?a2=a5,故A選項錯誤;B、a﹣2=,故B選項錯誤;C、3﹣2=,故C選項正確;D、(a+2)(a﹣2)=a2﹣4,故D選項錯誤,故選C.【題目點撥】本題考查了同底數冪的乘除運算以及負指數冪的性質以及二次根式的加減運算、平方差公式,正確掌握相關運算法則是解題關鍵.9、D【解題分析】

解:根據圖中尺規作圖的痕跡,可得∠DAE=∠B,故A選項正確,∴AE∥BC,故C選項正確,∴∠EAC=∠C,故B選項正確,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D選項錯誤,故選D.【題目點撥】本題考查作圖—復雜作圖;平行線的判定與性質;三角形的外角性質.10、D【解題分析】

畫圖,找出G2的臨界點,以及G1的臨界直線,分析出G1過定點,根據k的正負與函數增減變化的關系,結合函數圖象逐個選項分析即可解答.【題目詳解】解:一次函數y2=2x+3(﹣1<x<2)的函數值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個臨界點,易知一次函數y1=kx+1﹣2k(k≠0)的圖象過定點M(2,1),直線MN與直線MQ為G1與G2有公共點的兩條臨界直線,從而當G1與G2有公共點時,y1隨x增大而減小;故①正確;當G1與G2沒有公共點時,分三種情況:一是直線MN,但此時k=0,不符合要求;二是直線MQ,但此時k不存在,與一次函數定義不符,故MQ不符合題意;三是當k>0時,此時y1隨x增大而增大,符合題意,故②正確;當k=2時,G1與G2平行正確,過點M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【題目點撥】本題是一次函數中兩條直線相交或平行的綜合問題,需要數形結合,結合一次函數的性質逐條分析解答,難度較大.11、D【解題分析】

眾數是一組數據中出現次數最多的數據,注意眾數可以不只一個;找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數.【題目詳解】解:數據1出現了5次,最多,故為眾數為1;按大小排列第6和第7個數均是1,所以中位數是1.故選D.【題目點撥】本題主要考查了確定一組數據的中位數和眾數的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項.注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數,如果數據有奇數個,則正中間的數字即為所求.如果是偶數個則找中間兩位數的平均數.12、C【解題分析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】

根據每人出8錢,則剩余3錢;如果每人出7錢,則差4錢,可以列出相應的方程,本題得以解決【題目詳解】解:由題意可設有人,列出方程:故答案為【題目點撥】本題考查由實際問題抽象出一元一次方程,解答本題的關鍵是明確題意,列出相應的方程.14、.【解題分析】試題分析:畫樹狀圖得:∵共有12種等可能的結果,點(m,n)恰好在反比例函數圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(m,n)在函數圖象上的概率是:=.故答案為.考點:反比例函數圖象上點的坐標特征;列表法與樹狀圖法.15、2【解題分析】

由題意得出△ABP為等邊三角形,在Rt△ACO2中,AO2=即可.【題目詳解】由題意易知:PO1⊥AB,∵∠APB=60°∴△ABP為等邊三角形,AC=BC=3∴圓心角∠AO2O1=60°∴在Rt△ACO2中,AO2==2.故答案為2.【題目點撥】本題考查的知識點是圓的性質,解題的關鍵是熟練的掌握圓的性質.16、【解題分析】試題分析:首先列表,然后根據表格求得所有等可能的結果與兩個骰子的點數相同的情況,再根據概率公式求解即可.解:列表得:(1,6)

(2,6)

(3,6)

(4,6)

(5,6)

(6,6)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

(6,5)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

∴一共有36種等可能的結果,兩個骰子的點數相同的有6種情況,∴兩個骰子的點數相同的概率為:=.故答案為.考點:列表法與樹狀圖法.17、﹣a【解題分析】,..18、1.738×1【解題分析】

解:將1738000用科學記數法表示為1.738×1.故答案為1.738×1.【題目點撥】本題考查科學記數法—表示較大的數,掌握科學計數法的計數形式,難度不大.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、AD的長約為225m,大樓AB的高約為226m【解題分析】

首先設大樓AB的高度為xm,在Rt△ABC中利用正切函數的定義可求得,然后根據∠ADB的正切表示出AD的長,又由CD=96m,可得方程,解此方程即可求得答案.【題目詳解】解:設大樓AB的高度為xm,

在Rt△ABC中,∵∠C=32°,∠BAC=92°,

∴,

在Rt△ABD中,,

∴,

∵CD=AC-AD,CD=96m,

∴,

解得:x≈226,∴

答:大樓AB的高度約為226m,AD的長約為225m.【題目點撥】本題考查解直角三角形的應用.要求學生能借助仰角構造直角三角形并解直角三角形,注意數形結合思想與方程思想的應用.20、(1)75°(2)見解析【解題分析】

(1)由等邊三角形的性質可得∠ACB=60°,BC=AC,由旋轉的性質可得CF=BC,∠BCF=90°,由等腰三角形的性質可求解;(2)由“SAS”可證△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可證AD∥BC.【題目詳解】解:(1)∵△ABC是等邊三角形∴∠ACB=60°,BC=AC∵等邊△ABC繞點C順時針旋轉90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等邊三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【題目點撥】本題考查了旋轉的性質,等邊三角形的性質,等腰三角形的性質,平行線的判定,熟練運用旋轉的性質是本題關鍵.21、(1)60;(2)20,20;(3)38000【解題分析】

(1)利用從左到右各長方形高度之比為3:4:5:10:8,可設捐5元、10元、15元、20元和30元的人數分別為3x、4x、5x、10x、8x,則根據題意得8x=1,解得x=2,然后計算3x+4x+5x++10x+8x即可;(2)先確定各組的人數,然后根據中位數和眾數的定義求解;(3)先計算出樣本的加權平均數,然后利用樣本平均數估計總體,用2000乘以樣本平均數即可.【題目詳解】(1)設捐5元、10元、15元、20元和30元的人數分別為3x、4x、5x、10x、8x,則8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);(2)捐5元、10元、15元、20元和30元的人數分別為6,8,10,20,1.∵20出現次數最多,∴眾數為20元;∵共有60個數據,第30個和第31個數據落在第四組內,∴中位數為20元;(3)2000=38000(元),∴估算全校學生共捐款38000元.【題目點撥】本題考查了條形統計圖:條形統計圖是用線段長度表示數據,根據數量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.也考查了樣本估計總體、中位數與眾數.22、(1)詳見解析;(2)詳見解析;(3)詳見解析.【解題分析】

(1)求出∠PBO+∠PDO=180°,根據角平分線定義得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根據平行線的性質得出即可;

(2)求出∠ABO=∠PDA,根據角平分線定義得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根據垂直定義得出即可;

(3)分為兩種情況:根據三角形面積公式求出即可.【題目詳解】(1)證明:如圖1.

∵在平面直角坐標系xOy中,點A在x軸的正半軸上,點B的坐標為(0,4),

∴∠AOB=90°.

∵DP⊥AB于點P,

∴∠DPB=90°,

∵在四邊形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,

∴∠PBO+∠PDO=180°,

∵BC平分∠ABO,DF平分∠PDO,

∴∠CBO=∠PBO,∠ODF=∠PDO,

∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,

∵在△FDO中,∠OFD+∠ODF=90°,

∴∠CBO=∠DFO,

∴DF∥CB.

(2)直線DF與CB的位置關系是:DF⊥CB,

證明:延長DF交CB于點Q,如圖2,

∵在△ABO中,∠AOB=90°,

∴∠BAO+∠ABO=90°,

∵在△APD中,∠APD=90°,

∴∠PAD+∠PDA=90°,

∴∠ABO=∠PDA,

∵BC平分∠ABO,DF平分∠PDO,

∴∠CBO=∠ABO,∠CDQ=∠PDO,

∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,

∴∠CDQ+∠DCQ=90°,

∴在△QCD中,∠CQD=90°,

∴DF⊥CB.

(3)解:過M作MN⊥y軸于N,

∵M(4,-1),

∴MN=4,ON=1,

當E在y軸的正半軸上時,如圖3,

∵△MCE的面積等于△BCO面積的倍時,

∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,

解得:OE=,

當E在y軸的負半軸上時,如圖4,

×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,

解得:OE=,

即E的坐標是(0,)或(0,-).【題目點撥】本題考查了平行線的性質和判定,三角形內角和定理,坐標與圖形性質,三角形的面積的應用,題目綜合性比較強,有一定的難度.23、(115)這組數據的中位數為15.116%;(116)這組數據的平均數是11511609.116億元;(15)116016年社會消費品零售總額為11515167×(115+15.116%)億元.【解題分析】試題分析:(115)根據中位數的定義把這組數據從小到大排列,找出最中間的數即可得出答案;(116)根據平均數的定義,求解即可;(15)根據增長率的中位數,可得116016年的銷售額.試題解析:解:(115)數據從小到大排列115.16%,116.5%,15.116%,16.115%,5.7%,則嘉興市1160115~116015年社會消費品零售總額增速這組數據的中位數是15.116%;(116)嘉興市近三年(1160116~116015年)的社會消費品零售總額這組數據的平均數是:(6.16+7.6+515.7+9.9+1150.0)÷5=11575.116(億元);(15)從增速中位數分析,嘉興市116016年社會消費品零售總額為1150×(115+15.116%)=16158.116716(億元).考點:115.折線統計圖;116.條形統計圖;15.算術平均數;16.中位數..24、(1)拋物線的表達式為;(2);(3)P點的坐標是.【解題分析】

分析:(1)由題意易得點A、C的坐標分別為(-1,0),(0,1),將這兩點坐標代入拋物線列出方程組,解得b、c的值即可求得拋物線的解析式;(2)如下圖,作PH⊥AC于H,連接OP,由已知條件先求得PC=2,AC=,結合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,結合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,這樣在Rt△APH中由tan∠PAC=即可求得所求答案了;(3)如圖,當四邊形AOPQ為符合要求的平行四邊形時,則此時PQ=AO=1,且點P、Q關于拋物線的對稱軸x=-1對稱,由此可得點P的橫坐標為-3,代入拋物線解析即可求得此時的點P的坐標.詳解:(1)∵直線y=x+1經過點A、C,點A在x軸上,點C在y軸上∴A點坐標是(﹣1,0),點C坐標是(0,1),又∵拋物線過A,C兩點,∴解得,∴拋物線的表達式為;(2)作PH⊥AC于H,∵點C、P在拋物線上,CP//AO,C(0,1),A(-1,0)∴P(-2,1),AC=,∴PC=2,,∴PH=,∵A(﹣1,0),C(0,1),∴∠CAO=15°.∵CP//AO,∴∠ACP=∠CAO=15°,∵PH⊥AC,∴CH=PH=,∴.∴;(3)∵,∴拋物線的對稱軸為直線,∵以AP,AO為鄰邊的平行四邊形的第四個頂點Q恰好也在拋物線上,∴PQ∥AO,且PQ=AO=1.∵P,Q都在拋物線上,∴P,Q關于直線對稱,∴P點的橫坐標是﹣3,∵當x=﹣3時,,∴P點的坐標是.點睛:(1)解第2小題的關鍵是:作出如圖所示的輔助線,構造出Rt△APH,并結合題中的已知條件求出PH和AH的長;(2)解第3小題的關鍵是:根據題意畫出符合要求的示意圖,并由PQ∥AO,PQ=AO及P、Q關于拋物線的對稱軸對稱得到點P的橫坐標.【題目詳解】請在此輸入詳解!25、(1)()1+=+()1;;(1)()1+=+()1;;(3)①成立,理由見解析;②成立,理由見解析.【解題分析】

(1)根據題目中的等式列出相同特征的等式即可;(1)根據題意找出等式特征并用n表達即可;(3)①先后證明左右兩邊的等式的結果,如果結果相同則成立;②先證明等式是否成立,如果成立再根據等式的特征寫出m,n至少有一個為無理數的等式.【題目詳解】解:(1)具有上述特征的等式可以是()1+=+()1,故答案為()1+=+()1;(1)上述等式可表示為()1+=+()1,故答案為()1+=+()1;(3)①

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論