




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省孝感市安陸市2024年中考數學五模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設∠CAB=α,那么拉線BC的長度為()A. B. C. D.2.把多項式ax3﹣2ax2+ax分解因式,結果正確的是()A.ax(x2﹣2x) B.ax2(x﹣2)C.ax(x+1)(x﹣1) D.ax(x﹣1)23.肥皂泡的泡壁厚度大約是0.00000071米,數字0.00000071用科學記數法表示為()A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣84.某車間有27名工人,生產某種由一個螺栓套兩個螺母的產品,每人每天生產螺母16個或螺栓22個,若分配x名工人生產螺栓,其他工人生產螺母,恰好使每天生產的螺栓和螺母配套,則下面所列方程中正確的是()A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)5.內角和為540°的多邊形是()A. B. C. D.6.如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:①線段MN的長;②△PAB的周長;③△PMN的面積;④直線MN,AB之間的距離;⑤∠APB的大?。渲袝S點P的移動而變化的是()A.②③ B.②⑤ C.①③④ D.④⑤7.下列四個圖形分別是四屆國際數學家大會的會標,其中屬于中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個8.下列說法錯誤的是()A.必然事件的概率為1B.數據1、2、2、3的平均數是2C.數據5、2、﹣3、0的極差是8D.如果某種游戲活動的中獎率為40%,那么參加這種活動10次必有4次中獎9.衡陽市某生態示范園計劃種植一批梨樹,原計劃總產值30萬千克,為了滿足市場需求,現決定改良梨樹品種,改良后平均每畝產量是原來的1.5倍,總產量比原計劃增加了6萬千克,種植畝數減少了10畝,則原來平均每畝產量是多少萬千克?設原來平均每畝產量為x萬千克,根據題意,列方程為()A.﹣=10 B.﹣=10C.﹣=10 D.+=1010.鄭州地鐵Ⅰ號線火車站站口分布如圖所示,有A,B,C,D,E五個進出口,小明要從這里乘坐地鐵去新鄭機場,回來后仍從這里出站,則他恰好選擇從同一個口進出的概率是()A. B. C. D.11.已知一元二次方程x2-8x+15=0的兩個解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為()A.13 B.11或13 C.11 D.1212.下列調查中,最適合采用全面調查(普查)的是()A.對我市中學生每周課外閱讀時間情況的調查B.對我市市民知曉“禮讓行人”交通新規情況的調查C.對我市中學生觀看電影《厲害了,我的國》情況的調查D.對我國首艘國產航母002型各零部件質量情況的調查二、填空題:(本大題共6個小題,每小題4分,共24分.)13.方程的解是_____.14.如圖,直線x=2與反比例函數和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.15.如圖,在△ABC中,∠C=90°,AC=8,BC=6,點D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使點A落在點A′處,當A′E⊥AC時,A′B=____.16.分解因式:x2﹣4=_____.17.如圖,把一個直角三角尺ACB繞著30°角的頂點B順時針旋轉,使得點A與CB的延長線上的點E重合連接CD,則∠BDC的度數為_____度.18.如圖,已知點A是反比例函數的圖象上的一個動點,連接OA,若將線段OA繞點O順時針旋轉90°得到線段OB,則點B所在圖象的函數表達式為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點,交y軸于點C,過點C作x軸的平行線與拋物線上的另一個交點為D,連接AC、BC.點P是該拋物線上一動點,設點P的橫坐標為m(m>4).(1)求該拋物線的表達式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點A、P的直線與y軸于點N,過點P作PM⊥CD,垂足為M,直線MN與x軸交于點Q,試判斷四邊形ADMQ的形狀,并說明理由.20.(6分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數量關系是,位置關系是.(2)探究證明:將圖1中的△CDE繞著點C順時針旋轉α(0°<α<90°),得到圖2,AE與MP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點C任意旋轉,若AC=4,CD=2,請直接寫出△PMN面積的最大值.21.(6分)如圖所示,飛機在一定高度上沿水平直線飛行,先在點處測得正前方小島的俯角為,面向小島方向繼續飛行到達處,發現小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機飛行的高度(結果保留根號).22.(8分)先化簡,再求值:,其中a=+1.23.(8分)有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標有數字1和-1;乙袋中有三個完全相同的小球,分別標有數字-1、0和1.小麗先從甲袋中隨機取出一個小球,記錄下小球上的數字為x;再從乙袋中隨機取出一個小球,記錄下小球上的數字為y,設點P的坐標為(x,y).(1)請用表格或樹狀圖列出點P所有可能的坐標;(1)求點P在一次函數y=x+1圖象上的概率.24.(10分)計算:(﹣1)2018﹣2+|1﹣|+3tan30°.25.(10分)-()-1+3tan60°26.(12分)為上標保障我國海外維和部隊官兵的生活,現需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口的費用(元/噸)如表所示:設從甲倉庫運送到A港口的物資為x噸,求總運費y(元)與x(噸)之間的函數關系式,并寫出x的取值范圍;求出最低費用,并說明費用最低時的調配方案.27.(12分)如圖,在菱形ABCD中,作于E,BF⊥CD于F,求證:.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】根據垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點睛:本題主要考查解直角三角形的應用,熟練掌握同角的余角相等和三角函數的定義是解題的關鍵.2、D【解題分析】
先提取公因式ax,再根據完全平方公式把x2﹣2x+1繼續分解即可.【題目詳解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故選D.【題目點撥】本題考查了因式分解,把一個多項式化成幾個整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個因式都不能再分解為止.3、C【解題分析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】0.00000071的小數點向或移動7位得到7.1,所以0.00000071用科學記數法表示為7.1×10﹣7,故選C.【題目點撥】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.4、D【解題分析】設分配x名工人生產螺栓,則(27-x)人生產螺母,根據一個螺栓要配兩個螺母可得方程2×22x=16(27-x),故選D.5、C【解題分析】試題分析:設它是n邊形,根據題意得,(n﹣2)?180°=140°,解得n=1.故選C.考點:多邊形內角與外角.6、B【解題分析】試題分析:①、MN=AB,所以MN的長度不變;②、周長C△PAB=(AB+PA+PB),變化;③、面積S△PMN=S△PAB=×AB·h,其中h為直線l與AB之間的距離,不變;④、直線NM與AB之間的距離等于直線l與AB之間的距離的一半,所以不變;⑤、畫出幾個具體位置,觀察圖形,可知∠APB的大小在變化.故選B考點:動點問題,平行線間的距離處處相等,三角形的中位線7、B【解題分析】
解:根據中心對稱的概念可得第一個圖形是中心對稱圖形,第二個圖形不是中心對稱圖形,第三個圖形是中心對稱圖形,第四個圖形不是中心對稱圖形,所以,中心對稱圖有2個.故選B.【題目點撥】本題考查中心對稱圖形的識別,掌握中心對稱圖形的概念是本題的解題關鍵.8、D【解題分析】試題分析:A.概率值反映了事件發生的機會的大小,必然事件是一定發生的事件,所以概率為1,本項正確;B.數據1、2、2、3的平均數是1+2+2+34C.這些數據的極差為5﹣(﹣3)=8,故本項正確;D.某種游戲活動的中獎率為40%,屬于不確定事件,可能中獎,也可能不中獎,故本說法錯誤,故選D.考點:1.概率的意義;2.算術平均數;3.極差;4.隨機事件9、A【解題分析】
根據題意可得等量關系:原計劃種植的畝數-改良后種植的畝數=10畝,根據等量關系列出方程即可.【題目詳解】設原計劃每畝平均產量萬千克,則改良后平均每畝產量為萬千克,根據題意列方程為:.故選:.【題目點撥】此題主要考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系.10、C【解題分析】
列表得出進出的所有情況,再從中確定出恰好選擇從同一個口進出的結果數,繼而根據概率公式計算可得.【題目詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個口進出的有5種情況,∴恰好選擇從同一個口進出的概率為=,故選C.【題目點撥】此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.11、B【解題分析】試題解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3為底邊,5為腰時,三邊長分別為3,5,5,周長為3+5+5=1;若3為腰,5為底邊時,三邊長分別為3,3,5,周長為3+3+5=11,綜上,△ABC的周長為11或1.故選B.考點:1.解一元二次方程-因式分解法;2.三角形三邊關系;3.等腰三角形的性質.12、D【解題分析】
由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似.由此,對各選項進行辨析即可.【題目詳解】A、對我市中學生每周課外閱讀時間情況的調查,人數眾多,意義不大,應采用抽樣調查,故此選項錯誤;B、對我市市民知曉“禮讓行人”交通新規情況的調查,人數眾多,意義不大,應采用抽樣調查,故此選項錯誤;C、對我市中學生觀看電影《厲害了,我的國》情況的調查,人數眾多,意義不大,應采用抽樣調查,故此選項錯誤;D、對我國首艘國產航母002型各零部件質量情況的調查,意義重大,應采用普查,故此選項正確;故選D.【題目點撥】本題考查了抽樣調查和全面調查的區別,選擇普查還是抽樣調查要根據所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解題分析】,,x=1,代入最簡公分母,x=1是方程的解.14、.【解題分析】
解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.15、或7【解題分析】
分兩種情況:①如圖1,作輔助線,構建矩形,先由勾股定理求斜邊AB=10,由中點的定義求出AD和BD的長,證明四邊形HFGB是矩形,根據同角的三角函數列式可以求DG和DF的長,并由翻折的性質得:∠DA'E=∠A,A'D=AD=5,由矩形性質和勾股定理可以得出結論:A'B=;②如圖2,作輔助線,構建矩形A'MNF,同理可以求出A'B的長.【題目詳解】解:分兩種情況:如圖1,過D作DG⊥BC與G,交A'E與F,過B作BH⊥A'E與H,D為AB的中點,BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四邊形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如圖2,過D作MN//AC,交BC與于N,過A'作A'F//AC,交BC的延長線于F,延長A'E交直線DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四邊形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;綜上所述,A'B的長為或.故答案為:或.【題目點撥】本題主要考查三角形翻轉后的性質,注意不同的情況需分情況討論.16、(x+2)(x﹣2)【解題分析】【分析】直接利用平方差公式進行因式分解即可.【題目詳解】x2﹣4=x2-22=(x+2)(x﹣2),故答案為:(x+2)(x﹣2).【題目點撥】本題考查了平方差公式因式分解.能用平方差公式進行因式分解的式子的特點是:兩項平方項,符號相反.17、1【解題分析】
根據△EBD由△ABC旋轉而成,得到△ABC≌△EBD,則BC=BD,∠EBD=∠ABC=30°,則有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化簡計算即可得出.【題目詳解】解:∵△EBD由△ABC旋轉而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,∴;故答案為:1.【題目點撥】此題考查旋轉的性質,即圖形旋轉后與原圖形全等.18、【解題分析】∵點A是反比例函數的圖象上的一個動點,設A(m,n),過A作AC⊥x軸于C,過B作BD⊥x軸于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO與△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴點B所在圖象的函數表達式為,故答案為:.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解題分析】
(1)由點A、B坐標利用待定系數法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點G,證△GAB∽△OAC得=,據此知BG=2AG.在Rt△ABG中根據BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據正切函數定義可得答案;(2)作BH⊥CD于點H,交CP于點K,連接AK,易得四邊形OBHC是正方形,應用“全角夾半角”可得AK=OA+HK,設K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據此求得點K(1,).待定系數法求出直線CK的解析式為y=-x+1.設點P的坐標為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點D坐標為(6,1),設P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當1<m<6時,由△OAN∽△HAP知=.據此得ON=m-1.再證△ONQ∽△HMQ得=.據此求得OQ=m-1.從而得出AQ=DM=6-m.結合AQ∥DM可得答案.②當m>6時,同理可得.【題目詳解】解:(1)將點A(2,0)和點B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點B作BG⊥CA,交CA的延長線于點G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如圖2,過點B作BH⊥CD于點H,交CP于點K,連接AK.易得四邊形OBHC是正方形.應用“全角夾半角”可得AK=OA+HK,設K(1,h),則BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴點K(1,),設直線CK的解析式為y=hx+1,將點K(1,)代入上式,得=1h+1.解得h=﹣,∴直線CK的解析式為y=﹣x+1,設點P的坐標為(x,y),則x是方程x2﹣3x+1=﹣x+1的一個解,將方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合題意,舍去)將x1=代入y=﹣x+1,得y=,∴點P的坐標為(,),∴m=;(3)四邊形ADMQ是平行四邊形.理由如下:∵CD∥x軸,∴yC=yD=1,將y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1=0,x2=6,∴點D(6,1),根據題意,得P(m,m2﹣3m+1),M(m,1),H(m,0),∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①當1<m<6時,DM=6﹣m,如圖3,∵△OAN∽△HAP,∴,∴=,∴ON===m﹣1,∵△ONQ∽△HMQ,∴,∴,∴,∴OQ=m﹣1,∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,∴AQ=DM=6﹣m,又∵AQ∥DM,∴四邊形ADMQ是平行四邊形.②當m>6時,同理可得:四邊形ADMQ是平行四邊形.綜上,四邊形ADMQ是平行四邊形.【題目點撥】本題主要考查二次函數的綜合問題,解題的關鍵是掌握待定系數法求函數解析式、相似三角形的判定與性質、平行四邊形的判定與性質及勾股定理、三角函數等知識點.20、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解題分析】
(1)由等腰直角三角形的性質易證△ACE≌△BCD,由此可得AE=BD,再根據三角形中位線定理即可得到PM=PN,由平行線的性質可得PM⊥PN;(2)(1)中的結論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當BD的值最大時,PM的值最大,△PMN的面積最大,推出當B、C、D共線時,BD的最大值=BC+CD=6,由此即可解決問題;【題目詳解】解:(1)PM=PN,PM⊥PN,理由如下:延長AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵點M、N分別是斜邊AB、DE的中點,點P為AD的中點,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如圖②中,設AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵點P、M、N分別為AD、AB、DE的中點,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠MGE+∠BHA=180°,∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴當BD的值最大時,PM的值最大,△PMN的面積最大,∴當B、C、D共線時,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面積的最大值=×3×3=.【題目點撥】本題考查的是幾何變換綜合題,熟知等腰直角三角形的判定與性質、全等三角形的判定與性質、三角形中位線定理的運用,解題的關鍵是正確尋找全等三角形解決問題,學會利用三角形的三邊關系解決最值問題,屬于中考壓軸題.21、【解題分析】
過點C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根據AD+BD=AB列方程求解可得.【題目詳解】解:過點C作CD⊥AB于點D,設CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵,∴AD====x,由AD+BD=AB可得x+x=10,解得:x=5﹣5,答:飛機飛行的高度為(5﹣5)km.22、【解題分析】
原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結果,把a的值代入計算即可求出值.【題目詳解】原式==,當a=+1時,原式=.【題目點撥】本題考查了分式的化簡求值,熟練掌握分式混合運算的運算順序以及運算法則是解題的關鍵.23、(1)見解析;(1)13【解題分析】試題分析:(1)畫出樹狀圖(或列表),根據樹狀圖(或表格)列出點P所有可能的坐標即可;(1)根據(1)的所有結果,計算出這些結果中點P在一次函數圖像上的個數,即可求得點P在一次函數圖像上的概率.試題解析:(1)畫樹狀圖:或列表
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年銅陵市市直事業單位公開招聘工作人員統一筆試原始筆試歷年典型考題及考點剖析附帶答案詳解
- 政府保密合同范本(2篇)
- 2024-2025承包商入廠安全培訓考試試題及答案【基礎+提升】
- 2025廠級員工安全培訓考試試題答案完美版
- 2025公司級員工安全培訓考試試題B卷
- 2025版權許可合同范例
- 2025水果種子買賣合同協議書
- 阿莫西林可行性研究報告
- 2025網約車服務合同
- 2025年K12課外輔導項目建議書
- DL∕T 1709.3-2017 智能電網調度控制系統技術規范 第3部分:基礎平臺
- 考核辦法和考核方案
- 化妝品生產OEM合同書
- 海上CANTITRAVEL平臺樁基施工關鍵技術應用v7
- 2024年4月自考08229計算機統計分析方法試題
- 有色金屬冶金概論課程教案
- 華為MA5800配置及調試手冊
- 中國生產安全行業市場運行動態及投資發展潛力分析報告
- 【真題】2023年鎮江市中考化學試卷(含答案解析)
- 2023-2024年電子物證專業考試復習題庫(含答案)
- 安全生產培訓課件:機器設備安全操作規程
評論
0/150
提交評論