安陽市洹北中學2023年數(shù)學高一上期末考試試題含解析_第1頁
安陽市洹北中學2023年數(shù)學高一上期末考試試題含解析_第2頁
安陽市洹北中學2023年數(shù)學高一上期末考試試題含解析_第3頁
安陽市洹北中學2023年數(shù)學高一上期末考試試題含解析_第4頁
安陽市洹北中學2023年數(shù)學高一上期末考試試題含解析_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安陽市洹北中學2023年數(shù)學高一上期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是偶函數(shù),它在上是減函數(shù).若,則的取值范圍是()A. B.C. D.2.設(shè)是定義在實數(shù)集上的函數(shù),且,若當時,,則有()A. B.C. D.3.過點且平行于直線的直線方程為A. B.C. D.4.若,則a,b,c的大小關(guān)系是()A. B.C. D.5.設(shè)函數(shù)的最小值為-1,則實數(shù)的取值范圍是A. B.C. D.6.已知函數(shù)在區(qū)間上單調(diào)遞增,若成立,則實數(shù)的取值范圍是()A. B.C. D.7.在平行四邊形ABCD中,E是CD中點,F(xiàn)是BE中點,若+=m+n,則()A., B.,C., D.,8.下列函數(shù)既是奇函數(shù)又是周期為π的函數(shù)是()A. B.C. D.9.函數(shù)的零點所在區(qū)間為:()A. B.C. D.10.在下列各區(qū)間上,函數(shù)是單調(diào)遞增的是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.我國古代數(shù)學名著《九章算術(shù)》中將底面為矩形且有一側(cè)棱垂直于底面的四棱錐稱為“陽馬”,現(xiàn)有一“陽馬”如圖所示,平面,,,,則該“陽馬”外接球的表面積為________.12.函數(shù),若為偶函數(shù),則最小的正數(shù)的值為______13.化簡:=____________14.若,且,則的值為__________15.在平面直角坐標系中,點在單位圓O上,設(shè),且.若,則的值為______________.16.兩圓x2+y2+6x-4y+9=0和x2+y2-6x+12y-19=0的位置關(guān)系是___________________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,全集.(1)求和;(2)已知非空集合,若,求實數(shù)的取值范圍.18.如圖,直三棱柱中,分別是的中點,.(1)證明:平面;(2)證明:平面平面.19.設(shè)直線與相交于一點.(1)求點的坐標;(2)求經(jīng)過點,且垂直于直線的直線的方程.20.已知的兩頂點和垂心.(1)求直線AB的方程;(2)求頂點C的坐標;(3)求BC邊的中垂線所在直線的方程.21.已知全集,若集合,.(1)若,求;(2)若,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)偶函數(shù)的性質(zhì)結(jié)合單調(diào)性可得,即可根據(jù)對數(shù)函數(shù)單調(diào)性解出不等式.【詳解】由于函數(shù)是偶函數(shù),由得,又因為函數(shù)在上是減函數(shù),所以在上是增函數(shù),則,即,解得.故選:C.2、B【解析】由f(2-x)=f(x)可知函數(shù)f(x)的圖象關(guān)于x=1對稱,所以,,又當x≥1時,f(x)=lnx單調(diào)遞增,所以,故選B3、A【解析】解析:設(shè)與直線平行直線方程為,把點代入可得,所以所求直線的方程為,故選A4、A【解析】根據(jù)題意,以及指數(shù)和對數(shù)的函數(shù)的單調(diào)性,來確定a,b,c的大小關(guān)系.【詳解】解:是增函數(shù),是增函數(shù).,又,【點睛】本題考查三個數(shù)的大小的求法,考查指數(shù)函數(shù)和對數(shù)函數(shù)性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.根據(jù)題意,構(gòu)造合適的對數(shù)函數(shù)和指數(shù)函數(shù),利用指數(shù)對數(shù)函數(shù)的單調(diào)性判定的范圍是關(guān)鍵.5、C【解析】當時,為增函數(shù),最小值為,故當時,,分離參數(shù)得,函數(shù)開口向下,且對稱軸為,故在遞增,,即.考點:分段函數(shù)的最值.【思路點晴】本題主要考查分段函數(shù)值域問題,由于函數(shù)的最小值為,所以要在兩段函數(shù)圖象都要討論最小值.首先考慮沒有參數(shù)的一段,當時,為增函數(shù),最小值為.由于這一段函數(shù)值域已經(jīng)包括了最小值,故當時,值域應(yīng)該不小于,分離常數(shù)后利用二次函數(shù)圖象與性質(zhì)可求得參數(shù)的取值范圍.6、A【解析】由增函數(shù)的性質(zhì)及定義域得對數(shù)不等式組,再對數(shù)函數(shù)性質(zhì)可求解【詳解】不等式即為,∵函數(shù)在區(qū)間上單調(diào)遞增,∴,即,解得,∴實數(shù)的取值范圍是,選A【點睛】本題考查函數(shù)的單調(diào)性應(yīng)用,考查解函數(shù)不等式,解題時除用函數(shù)的單調(diào)性得出不等關(guān)系外,一定要注意函數(shù)的定義域的約束,否則易出錯7、B【解析】通過向量之間的關(guān)系將轉(zhuǎn)化到平行四邊形邊上即可【詳解】由題意可得,同理:,所以所以,故選B.【點睛】本題考查向量的線性運算,重點利用向量的加減進行轉(zhuǎn)化,同時,利用向量平行進行代換8、D【解析】先判斷函數(shù)的奇偶性,再求函數(shù)的周期,然后確定選項【詳解】是最小正周期為的奇函數(shù),故A錯誤;的最小正周期是π是偶函數(shù),故B錯誤;是最小正周期是π是偶函數(shù),故C錯誤;最小正周期為π的奇函數(shù),故D正確﹒故選:D9、C【解析】利用函數(shù)的單調(diào)性及零點存在定理即得.【詳解】因為,所以函數(shù)單調(diào)遞減,,∴函數(shù)的零點所在區(qū)間為.故選:C.10、C【解析】根據(jù)選項的自變量范圍判斷函數(shù)的單調(diào)區(qū)間即可.【詳解】當時,,由正弦函數(shù)單調(diào)性知,函數(shù)單增區(qū)間應(yīng)滿足,即,觀察選項可知,是函數(shù)的單增區(qū)間,其余均不是,故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】以,,為棱作長方體,長方體的對角線即為外接球的直徑,從而求出外接球的半徑,進而求出外接球的表面積.【詳解】由題意,以,,為棱作長方體,長方體的對角線即為外接球的直徑,設(shè)外接球的半徑為,則故.故答案為:【點睛】本題考查了多面體外接球問題以及球的表面積公式,屬于中檔題.12、【解析】根據(jù)三角函數(shù)的奇偶性知應(yīng)可用誘導公式化為余弦函數(shù)【詳解】,其為偶函數(shù),則,,,其中最小的正數(shù)為故答案【點睛】本題考查三角函數(shù)的奇偶性,解題時直接利用誘導公式分析即可13、【解析】利用三角函數(shù)的平方關(guān)系式,化簡求解即可【詳解】===又,所以,所以=,故填:【點睛】本題考查同角三角函數(shù)的基本關(guān)系式的應(yīng)用,三角函數(shù)的化簡求值,考查計算能力14、【解析】∵且,∴,∴,∴cosα+sinα=0,或cosα?sinα=(不合題意,舍去),∴,故答案為?1.15、【解析】由題意,,,只需求出即可.【詳解】由題意,,因為,所以,,所以.故答案為:【點睛】本題考查三角恒等變換中的給值求值問題,涉及到三角函數(shù)的定義及配角的方法,考查學生的運算求解能力,是一道中檔題.16、外切【解析】先把兩個圓的方程變?yōu)闃藴史匠蹋謩e得到圓心坐標和半徑,然后利用兩點間的距離公式求出兩個圓心之間的距離與半徑比較大小來判別得到這兩個圓的位置關(guān)系【詳解】由x2+y2+6x-4y+9=0得:(x+3)2+(y-2)2=4,圓心O(-3,2),半徑為r=2;由x2+y2-6x+12y-19=0得:(x-3)2+(y+6)2=64,圓心P(3,-6),半徑為R=8則兩個圓心的距離,所以兩圓的位置關(guān)系是:外切即答案為外切【點睛】本題考查學生會利用兩點間的距離公式求兩點的距離,會根據(jù)兩個圓心之間的距離與半徑相加相減的大小比較得到圓與圓的位置關(guān)系三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求得集合,根據(jù)集合的交集、并集和補集的運算,即可求解;(2)由,所以,結(jié)合集合的包含關(guān)系,即可求解.【詳解】(1)由題意,集合,因為集合,則,所以,.(2)由題意,因為,所以,又因為,,所以,即實數(shù)的取值范圍為.【點睛】本題主要考查了集合的交集、并集和補集的運算,以及利用集合的包含關(guān)系求解參數(shù)問題,其中解答中熟記集合的基本運算,以及合理利用集合的包含關(guān)系求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18、(1)見解析;(2)見解析【解析】(1)連結(jié),交點,連,推出//1,即可證明平面;(2)取的中點,連結(jié),證明四邊形是平行四邊形,證明,得到平面,然后證明平面平面試題解析:(1)連結(jié),交點,連,則是的中點,因為是的中點,故//.因為平面,平面.所以//平面.(2)取的中點,連結(jié),因為是的中點,故//且.顯然//,且,所以//且則四邊形是平行四邊形.所以//.因為,所以又,所以直線平面.因為//,所以直線平面.因為平面,所以平面平面19、(1);(2).【解析】(1)將兩直線方程聯(lián)立,求出方程組的公共解,即可得出點的坐標;(2)求出直線的斜率,可得出垂線的斜率,然后利用點斜式方程可得出所求直線的方程,化為一般式即可.【詳解】(1)由,解得,因此,點的坐標為;(2)直線斜率為,垂直于直線的直線斜率為,則過點且垂直于直線的直線的方程為,即:.【點睛】本題兩直線交點坐標計算,同時也考查了直線的垂線方程的求解,解題時要將兩直線的垂直關(guān)系轉(zhuǎn)化為斜率關(guān)系,考查計算能力,屬于基礎(chǔ)題.20、(1);(2);(3).【解析】(1)由兩點間的斜率公式求出,再代入其中一點,由點斜式求出直線的方程(也可直接代兩點式求解);(2)由題可知,,借助斜率公式,進而可分別求出直線與直線的方程,再聯(lián)立方程,即可求得點的坐標;(3)由中垂線性質(zhì)知,邊的中垂線的斜率等于,再由(2)可求得邊的中點坐標,進而可求解.【詳解】(1)由題意,直線的方程為:即:.(2)由題作示意圖如下:,直線的方程為:,即:——①又,直線與軸垂直,直線的方程為:——②聯(lián)立①②,解得,故頂點的坐標為(3)由題意及(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論