2024屆江蘇省揚州市部分區、縣中考四模數學試題含解析_第1頁
2024屆江蘇省揚州市部分區、縣中考四模數學試題含解析_第2頁
2024屆江蘇省揚州市部分區、縣中考四模數學試題含解析_第3頁
2024屆江蘇省揚州市部分區、縣中考四模數學試題含解析_第4頁
2024屆江蘇省揚州市部分區、縣中考四模數學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省揚州市部分區、縣中考四模數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接AC,若∠CAB=22.5°,CD=8cm,則⊙O的半徑為()A.8cm B.4cm C.4cm D.5cm2.將一次函數的圖象向下平移2個單位后,當時,的取值范圍是()A. B. C. D.3.二元一次方程組的解為()A. B. C. D.4.下面說法正確的個數有()①如果三角形三個內角的比是1∶2∶3,那么這個三角形是直角三角形;②如果三角形的一個外角等于與它相鄰的一個內角,則這么三角形是直角三角形;③如果一個三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形;④如果∠A=∠B=12⑤若三角形的一個內角等于另兩個內角之差,那么這個三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,則此三角形是直角三角形.A.3個B.4個C.5個D.6個5.方程組的解x、y滿足不等式2x﹣y>1,則a的取值范圍為()A.a≥ B.a> C.a≤ D.a>6.若點(x1,y1),(x2,y2),(x3,y3)都是反比例函數y=﹣圖象上的點,并且y1<0<y2<y3,則下列各式中正確的是()A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x17.下列各數中,最小的數是()A.0 B. C. D.8.已知關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數根,下列判斷正確的是()A.1一定不是關于x的方程x2+bx+a=0的根B.0一定不是關于x的方程x2+bx+a=0的根C.1和﹣1都是關于x的方程x2+bx+a=0的根D.1和﹣1不都是關于x的方程x2+bx+a=0的根9.已知:二次函數y=ax2+bx+c(a≠1)的圖象如圖所示,下列結論中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1兩根分別為-3,1;⑤4a+2b+c>1.其中正確的項有()A.2個 B.3個 C.4個 D.5個10.已知x=1是方程x2+mx+n=0的一個根,則代數式m2+2mn+n2的值為()A.–1B.2C.1D.–2二、填空題(本大題共6個小題,每小題3分,共18分)11.拋物線y=(x﹣2)2﹣3的頂點坐標是____.12.圖1、圖2的位置如圖所示,如果將兩圖進行拼接(無覆蓋),可以得到一個矩形,請利用學過的變換(翻折、旋轉、軸對稱)知識,將圖2進行移動,寫出一種拼接成矩形的過程______.13.如圖所示,P為∠α的邊OA上一點,且P點的坐標為(3,4),則sinα+cosα=_____.14.因式分解:a2﹣a=_____.15.如圖,在矩形ABCD中,AD=4,點P是直線AD上一動點,若滿足△PBC是等腰三角形的點P有且只有3個,則AB的長為.16.如圖,已知△ABC,AB=6,AC=5,D是邊AB的中點,E是邊AC上一點,∠ADE=∠C,∠BAC的平分線分別交DE、BC于點F、G,那么的值為__________.三、解答題(共8題,共72分)17.(8分)為了獎勵優秀班集體,學校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元,購買3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的單價各是多少元?若學校購買5副乒乓球拍和3副羽毛球拍,一共應支出多少元?18.(8分)如圖,要修一個育苗棚,棚的橫截面是,棚高,長,棚頂與地面的夾角為.求覆蓋在頂上的塑料薄膜需多少平方米(結果保留小數點后一位).(參考數據:,,)19.(8分)如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經過點A、B和D(4,-2(1)求拋物線的表達式.(2)如果點P由點A出發沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發,沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動.設S=PQ2(cm2).①試求出S與運動時間t之間的函數關系式,并寫出t的取值范圍;②當S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.20.(8分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.21.(8分)九(1)班同學分成甲、乙兩組,開展“四個城市建設”知識競賽,滿分得5分,得分均為整數.小馬虎根據競賽成績,繪制了如圖所示的統計圖.經確認,扇形統計圖是正確的,條形統計圖也只有乙組成績統計有一處錯誤.(1)指出條形統計圖中存在的錯誤,并求出正確值;(2)若成績達到3分及以上為合格,該校九年級有800名學生,請估計成績未達到合格的有多少名?(3)九(1)班張明、李剛兩位成績優秀的同學被選中參加市里組織的“四個城市建設”知識競賽.預賽分為A、B、C、D四組進行,選手由抽簽確定.張明、李剛兩名同學恰好分在同一組的概率是多少?22.(10分)在中,,是邊的中線,于,連結,點在射線上(與,不重合)(1)如果①如圖1,②如圖2,點在線段上,連結,將線段繞點逆時針旋轉,得到線段,連結,補全圖2猜想、之間的數量關系,并證明你的結論;(2)如圖3,若點在線段的延長線上,且,連結,將線段繞點逆時針旋轉得到線段,連結,請直接寫出、、三者的數量關系(不需證明)23.(12分)一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當在點A處放置標桿時,李明測得直立的標桿高AM與影子長AE正好相等,接著李明沿AC方向繼續向前走,走到點B處放置同一個標桿,測得直立標桿高BN的影子恰好是線段AB,并測得AB=1.2m,已知標桿直立時的高為1.8m,求路燈的高CD的長.24.如圖,矩形ABCD中,O是AC與BD的交點,過O點的直線EF與AB、CD的延長線分別交于E、F.(1)證明:△BOE≌△DOF;(2)當EF⊥AC時,求證四邊形AECF是菱形.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】

連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點,即CE=DE,由OA=OC,利用等邊對等角得到一對角相等,確定出三角形COE為等腰直角三角形,求出OC的長,即為圓的半徑.【題目詳解】解:連接OC,如圖所示:∵AB是⊙O的直徑,弦CD⊥AB,∴∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE為△AOC的外角,∴∠COE=45°,∴△COE為等腰直角三角形,∴故選:C.【題目點撥】此題考查了垂徑定理,等腰直角三角形的性質,以及圓周角定理,熟練掌握垂徑定理是解本題的關鍵.2、C【解題分析】

直接利用一次函數平移規律,即k不變,進而利用一次函數圖象的性質得出答案.【題目詳解】將一次函數向下平移2個單位后,得:,當時,則:,解得:,當時,,故選C.【題目點撥】本題主要考查了一次函數平移,解一元一次不等式,正確利用一次函數圖象上點的坐標性質得出是解題關鍵.3、C【解題分析】

利用加減消元法解這個二元一次方程組.【題目詳解】解:①-②2,得:y=-2,將y=-2代入②,得:2x-2=4,解得,x=3,所以原方程組的解是.故選C.【題目點撥】本題考查了解二元一次方程組和解一元一次方程等知識點,解此題的關鍵是把二元一次方程組轉化成一元一次方程,題目比較典型,難度適中.4、C【解題分析】試題分析:①∵三角形三個內角的比是1:2:3,∴設三角形的三個內角分別為x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小題正確;②∵三角形的一個外角與它相鄰的一個內角的和是180°,∴若三角形的一個外角等于與它相鄰的一個內角,則此三角形是直角三角形,故本小題正確;③∵直角三角形的三條高的交點恰好是三角形的一個頂點,∴若三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形,故本小題正確;④∵∠A=∠B=12∴設∠A=∠B=x,則∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小題正確;⑤∵三角形的一個外角等于與它不相鄰的兩內角之和,三角形的一個內角等于另兩個內角之差,∴三角形一個內角也等于另外兩個內角的和,∴這個三角形中有一個內角和它相鄰的外角是相等的,且外角與它相鄰的內角互補,∴有一個內角一定是90°,故這個三角形是直角三角形,故本小題正確;⑥∵三角形的一個外角等于與它不相鄰的兩內角之和,又一個內角也等于另外兩個內角的和,由此可知這個三角形中有一個內角和它相鄰的外角是相等的,且外角與它相鄰的內角互補,∴有一個內角一定是90°,故這個三角形是直角三角形,故本小題正確.故選D.考點:1.三角形內角和定理;2.三角形的外角性質.5、B【解題分析】

方程組兩方程相加表示出2x﹣y,代入已知不等式即可求出a的范圍.【題目詳解】①+②得:解得:故選:B.【題目點撥】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數的值.6、D【解題分析】

先根據反比例函數的解析式判斷出函數圖象所在的象限及在每一象限內函數的增減性,再根據y1<0<y2<y3判斷出三點所在的象限,故可得出結論.【題目詳解】解:∵反比例函數y=﹣中k=﹣1<0,∴此函數的圖象在二、四象限,且在每一象限內y隨x的增大而增大,∵y1<0<y2<y3,∴點(x1,y1)在第四象限,(x2,y2)、(x3,y3)兩點均在第二象限,∴x2<x3<x1.故選:D.【題目點撥】本題考查的是反比例函數圖象上點的坐標特點,先根據題意判斷出函數圖象所在的象限是解答此題的關鍵.7、D【解題分析】

根據實數大小比較法則判斷即可.【題目詳解】<0<1<,故選D.【題目點撥】本題考查了實數的大小比較的應用,掌握正數都大于0,負數都小于0,兩個負數比較大小,其絕對值大的反而小是解題的關鍵.8、D【解題分析】

根據方程有兩個相等的實數根可得出b=a+1或b=-(a+1),當b=a+1時,-1是方程x2+bx+a=0的根;當b=-(a+1)時,1是方程x2+bx+a=0的根.再結合a+1≠-(a+1),可得出1和-1不都是關于x的方程x2+bx+a=0的根.【題目詳解】∵關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數根,∴,∴b=a+1或b=-(a+1).當b=a+1時,有a-b+1=0,此時-1是方程x2+bx+a=0的根;當b=-(a+1)時,有a+b+1=0,此時1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是關于x的方程x2+bx+a=0的根.故選D.【題目點撥】本題考查了根的判別式以及一元二次方程的定義,牢記“當△=0時,方程有兩個相等的實數根”是解題的關鍵.9、B【解題分析】

根據二次函數的圖象與性質判斷即可.【題目詳解】①由拋物線開口向上知:a>1;拋物線與y軸的負半軸相交知c<1;對稱軸在y軸的右側知:b>1;所以:abc<1,故①錯誤;②對稱軸為直線x=-1,,即b=2a,所以b-2a=1.故②錯誤;③由拋物線的性質可知,當x=-1時,y有最小值,即a-b+c<(),即a﹣b<m(am+b)(m≠﹣1),故③正確;④因為拋物線的對稱軸為x=1,且與x軸的一個交點的橫坐標為1,所以另一個交點的橫坐標為-3.因此方程ax+bx+c=1的兩根分別是1,-3.故④正確;⑤由圖像可得,當x=2時,y>1,即:4a+2b+c>1,故⑤正確.故正確選項有③④⑤,故選B.【題目點撥】本題二次函數的圖象與性質,牢記公式和數形結合是解題的關鍵.10、C【解題分析】

把x=1代入x2+mx+n=0,可得m+n=-1,然后根據完全平方公式把m2+2mn+n2變形后代入計算即可.【題目詳解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故選C.【題目點撥】本題考查了方程的根和整體代入法求代數式的值,能使方程兩邊相等的未知數的值叫做方程的根.二、填空題(本大題共6個小題,每小題3分,共18分)11、(2,﹣3)【解題分析】

根據:對于拋物線y=a(x﹣h)2+k的頂點坐標是(h,k).【題目詳解】拋物線y=(x﹣2)2﹣3的頂點坐標是(2,﹣3).故答案為(2,﹣3)【題目點撥】本題考核知識點:拋物線的頂點.解題關鍵點:熟記求拋物線頂點坐標的公式.12、先將圖2以點A為旋轉中心逆時針旋轉,再將旋轉后的圖形向左平移5個單位.【解題分析】

變換圖形2,可先旋轉,然后平移與圖2拼成一個矩形.【題目詳解】先將圖2以點A為旋轉中心逆時針旋轉90°,再將旋轉后的圖形向左平移5個單位可以與圖1拼成一個矩形.故答案為:先將圖2以點A為旋轉中心逆時針旋轉90°,再將旋轉后的圖形向左平移5個單位.【題目點撥】本題考查了平移和旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.13、【解題分析】

根據正弦和余弦的概念求解.【題目詳解】解:∵P是∠α的邊OA上一點,且P點坐標為(3,4),∴PB=4,OB=3,OP==5,故sinα==,cosα=,∴sinα+cosα=,故答案為【題目點撥】此題考查的是銳角三角函數的定義,解答此類題目的關鍵是找出所求角的對應邊.14、a(a﹣1)【解題分析】

直接提取公因式a,進而分解因式得出答案【題目詳解】a2﹣a=a(a﹣1).故答案為a(a﹣1).【題目點撥】此題考查公因式,難度不大15、1.【解題分析】試題分析:如圖,當AB=AD時,滿足△PBC是等腰三角形的點P有且只有3個,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),則AB=AD=1,故答案為1.考點:矩形的性質;等腰三角形的性質;勾股定理;分類討論.16、【解題分析】

由題中所給條件證明△ADF△ACG,可求出的值.【題目詳解】解:在△ADF和△ACG中,AB=6,AC=5,D是邊AB的中點AG是∠BAC的平分線,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案為.【題目點撥】本題考查了相似三角形的判定和性質,難度適中,需熟練掌握.三、解答題(共8題,共72分)17、(1)一副乒乓球拍28元,一副羽毛球拍60元(2)共320元.【解題分析】整體分析:(1)設購買一副乒乓球拍x元,一副羽毛球拍y元,根據“購買2副乒乓球拍和1副羽毛球拍共需116元,購買3幅乒乓球拍和2幅羽毛球拍共需204元”列方程組求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的單價求解.解:(1)設購買一副乒乓球拍x元,一副羽毛球拍y元,由題意得,,解得:答:購買一副乒乓球拍28元,一副羽毛球拍60元.(2)5×28+3×60=320元答:購買5副乒乓球拍和3副羽毛球拍共320元.18、33.3【解題分析】

根據解直角三角形的知識先求出AC的值,再根據矩形的面積計算方法求解即可.【題目詳解】解:∵AC====∴矩形面積=10≈33.3(平方米)答:覆蓋在頂上的塑料薄膜需33.3平方米【題目點撥】本題考查了解直角三角形的應用,掌握正弦的定義是解題的關鍵.19、(1)拋物線的解析式為:y=1(2)①S與運動時間t之間的函數關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點的坐標是(3,﹣32(3)M的坐標為(1,﹣83【解題分析】試題分析:(1)設拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標代入即可;(2)①由勾股定理即可求出;②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標,再分為兩種種情況:A、B、C即可根據平行四邊形的性質求出R的坐標;(3)A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標.試題解析:(1)設拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(2,﹣2)A點的坐標是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運動時間t之間的函數關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形.∵S=5t2﹣8t+4(0≤t≤1),∴當S=54時,5t2﹣8t+4=54,得20t解得t=12,t=11此時點P的坐標為(1,﹣2),Q點的坐標為(2,﹣32若R點存在,分情況討論:(i)假設R在BQ的右邊,如圖所示,這時QR=PB,RQ∥PB,則R的橫坐標為3,R的縱坐標為﹣32即R(3,﹣32代入y=1∴這時存在R(3,﹣32(ii)假設R在QB的左邊時,這時PR=QB,PR∥QB,則R(1,﹣32)代入,y=左右不相等,∴R不在拋物線上.(1分)綜上所述,存點一點R(3,﹣32答:存在,R點的坐標是(3,﹣32(3)如圖,M′B=M′A,∵A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,理由是:∵MA=MB,若M不為L與DB的交點,則三點B、M、D構成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距離之差為|DB|時,差值最大,設直線BD的解析式是y=kx+b,把B、D的坐標代入得:,解得:k=23,b=﹣10∴y=23x﹣10拋物線y=1把x=1代入得:y=﹣8∴M的坐標為(1,﹣83答:M的坐標為(1,﹣83考點:二次函數綜合題.20、(1)證明見解析;(2)證明見解析;(3)74.【解題分析】

(1)根據四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【題目詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結AC因為△ACM∽△ABE,則∠ACM=∠B=90°,因為∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點M,C,F在同一直線上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因為MC=BE,FC=CE,所以MF=BC=BD,所以四邊形BFMD是平行四邊形(3)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【題目點撥】本題主要考查了正方形的性質的應用,解此題的關鍵是能正確作出輔助線,綜合性比較強,有一定的難度.21、(1)見解析;(2)140人;(1).【解題分析】

(1)分別利用條形統計圖和扇形統計圖得出總人數,進而得出錯誤的哪組;(2)求出1分以下所占的百分比即可估計成績未達到合格的有多少名學生;(1)根據題意可以畫出相應的樹狀圖,從而可以求得張明、李剛兩名同恰好分在同一組的概率.【題目詳解】(1)由統計圖可得:(1分)(2分)(4分)(5分)甲(人)01764乙(人)22584全體(%)512.5101517.5乙組得分的人數統計有誤,理由:由條形統計圖和扇形統計圖的對應可得,2÷5%=40,(1+2)÷12.5%=40,(7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,故乙組得5分的人數統計有誤,正確人數應為:40×17.5%﹣4=1.(2)800×(5%+12.5%)=140(人);(1)如圖得:∵共有16種等可能的結果,所選兩人正好分在一組的有4種情況,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論