




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省臨沂市第十九中學2024屆數學高二上期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.年底以來,我國多次在重要場合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正負抵消,實現二氧化碳“零排放”.二氧化碳的分子是由一個碳原子和兩個氧原子構成的,其結構式為.已知氧有、、三種天然同位素,碳有、、三種天然同位素,則由上述同位素可構成的不同二氧化碳分子共有()A.種 B.種C.種 D.種2.已知橢圓C:的左右焦點為F1,F2離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為A. B.C. D.3.已知平面,的法向量分別為,,則()A. B.C.,相交但不垂直 D.,的位置關系不確定4.復數的虛部為()A. B.C. D.5.展開式中第3項的二項式系數為()A.6 B.C.24 D.6.已知數列為等比數列,若,則的值為()A.-4 B.4C.-2 D.27.已知橢圓的左右焦點分別為,直線與C相交于M,N兩點(其中M在第一象限),若M,,N,四點共圓,且直線傾斜角不小于,則橢圓C的離心率e的取值范圍是()A. B.C. D.8.已知數列滿足,且,,則()A. B.C. D.9.如圖,在三棱柱中,E,F分別是BC,中點,,則()A.B.C.D.10.我們知道∶用平行于圓錐母線的平面(不過頂點)截圓錐,則平面與圓錐側面的交線是拋物線一部分,如圖,在底面半徑和高均為2的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點,已知過CD與E的平面與圓錐側面的交線是以E為頂點的圓錐曲線的一部分,則該圓錐曲線的焦點到其準線的距離等于()A. B.C. D.111.命題的否定是()A. B.C. D.12.在等比數列{an}中,a3,a15是方程x2+6x+2=0的根,則的值為()A. B.C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,且,則實數______.14.已知空間直角坐標系中,點,,若,與同向,則向量的坐標為______.15.函數的圖象在點處的切線方程為______16.兩個人射擊,互相獨立.已知甲射擊一次中靶概率是0.6,乙射擊一次中靶概率是0.3,現在兩人各射擊一次,中靶至少一次就算完成目標,則完成目標的概率為_____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓經過點,橢圓E的一個焦點為.(1)求橢圓E的方程;(2)若直線l過點且與橢圓E交于兩點.求的最大值.18.(12分)設,分別是橢圓()的左、右焦點,E的離心率為.短軸長為2.(1)求橢圓E的方程:(2)過點的直線l交橢圓E于A,B兩點,是否存在實數t,使得恒成立?若存在,求出t的值;若不存在,說明理由.19.(12分)已知動圓過點,且與直線:相切(1)求動圓圓心的軌跡方程;(2)若過點且斜率的直線與圓心的軌跡交于兩點,求線段的長度20.(12分)已知函數,其中(1)當時,求函數的單調區間;(2)①若恒成立,求的最小值;②證明:,其中.21.(12分)設,已知函數(1)若,求函數在處切線的方程;(2)求函數在上的最大值22.(10分)已知三棱柱中,面底面,,底面是邊長為的等邊三角形,,、分別在棱、上,且.(1)求證:底面;(2)在棱上找一點,使得和面所成角的余弦值為,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分兩種情況討論:兩個氧原子相同、兩個氧原子不同,分別計算出兩種情況下二氧化碳分子的個數,利用分類加法計數原理可得結果.【詳解】分以下兩種情況討論:若兩個氧原子相同,此時二氧化碳分子共有種;若兩個氧原子不同,此時二氧化碳分子共有種.由分類加法計數原理可知,由上述同位素可構成的不同二氧化碳分子共有種.故選:C.2、A【解析】若△AF1B的周長為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點:橢圓方程及性質3、C【解析】利用向量法判斷平面與平面的位置關系.【詳解】因為平面,的法向量分別為,,所以,即不垂直,則,不垂直,因為,即即不平行,則,不平行,所以,相交但不垂直,故選:C4、D【解析】直接根據.復數的乘法運算結合復數虛部的定義即可得出答案【詳解】解:,所以復數的虛部為.故選:D.5、A【解析】根據二項展開式的通項公式,即可求解.【詳解】由題意,二項式展開式中第3項,所以展開式中第3項的二項式系數為.故選:A.6、B【解析】根據,利用等比數列的通項公式求解.【詳解】因為,所以,則,解得,所以.故選:B7、B【解析】設橢圓的半焦距為c,由橢圓的中心對稱性和圓的性質得以為直徑的圓與橢圓C有公共點,則有以,再根據直線傾斜角不小于得,由橢圓的定義得,由此可求得橢圓離心率的范圍.【詳解】解:設橢圓的半焦距為c,由橢圓的中心對稱性和M,,N,四點共圓得,四邊形必為一個矩形,即以為直徑的圓與橢圓C有公共點,所以,所以,所以,因為直線傾斜角不小于,所以直線傾斜角不小于,所以,化簡得,,因為,所以,所以,,又,因為,所以,所以,所以,所以.故選:B.8、A【解析】由已知兩個不等式,利用“兩邊夾”思想求得,然后利用累加法可求得【詳解】∵,∴,∴,又,∴,即,∴故選:A【點睛】本題考查數列的遞推式,由遞推式的特征,采用累加法求得數列的項.解題關鍵是利用“兩邊夾”思想求解9、D【解析】根據空間向量線性運算的幾何意義進行求解即可.【詳解】,故選:D10、C【解析】由圓錐的底面半徑和高及E的位置可得,建立適當的平面直角坐標系,可得C的坐標,設拋物線的方程,將C的坐標代入求出拋物線的方程,進而可得焦點到其準線的距離【詳解】設AB,CD的交點為,連接PO,由題意可得PO⊥面AB,所以PO⊥OB,由題意OB=OP=OC=2,因為E是母線PB的中點,所以,由題意建立適當的坐標系,以BP為y軸以OE為x軸,E為坐標原點,如圖所示∶可得∶,設拋物線的方程為y2=mx,將C點坐標代入可得,所以,所以拋物線的方程為∶,所以焦點坐標為,準線方程為,所以焦點到其準線的距離為故選:C11、C【解析】根據含全稱量詞命題的否定可寫出結果.【詳解】全稱命題的否定是特稱命題,所以命題的否定是.故選:C12、B【解析】由韋達定理得a3a15=2,由等比數列通項公式性質得:a92=a3a15=a2a16=2,由此求出答案【詳解】解:∵在等比數列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故選B【點睛】本題考查等比數列中兩項積與另一項的比值的求法,是基礎題,解題時要認真審題,注意等比數列的性質的合理運用二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用向量平行的條件直接解出.【詳解】因為向量,,且,所以,解得.故答案為:.14、【解析】求出坐標,根據給條件表示出坐標,利用向量模的坐標表示計算作答.【詳解】因,,則,因與同向,則設,因此,,于是得,解得,則,所以向量的坐標為.故答案為:15、【解析】求出、的值,利用點斜式可得出所求切線的方程.【詳解】因為,則,所以,,,故所求切線方程為,即.故答案為:.16、72【解析】利用獨立事件的概率乘法公式和對立事件的概率公式可求得所求事件的概率.【詳解】由題意可知,若甲、乙兩個各射擊1次,至少有一人命中目標的概率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設橢圓的左,右焦點分別為,.利用橢圓的定義求出,然后求解,得到橢圓方程;(2)當直線的斜率存在時,設,,,,,聯立直線與橢圓方程,利用韋達定理以及弦長公式得到弦長的表達式,再通過換元利用二次函數的性質求解最值即可【小問1詳解】依題意,設橢圓的左,右焦點分別為,則,,,,橢圓的方程為【小問2詳解】當直線的斜率存在時,設,,,,由得由得由,得設,則,當直線的斜率不存在時,,的最大值為18、(1)(2)存在,【解析】(1)由條件列出,,的方程,解方程求出,,,由此可得橢圓E的方程:(2)當直線的斜率存在時,設直線的方程為,聯立直線的方程與橢圓方程化簡可得,設,,可得,,由此證明,再證明當直線的斜率不存在時也成立,由此確定存在實數t,使得恒成立【小問1詳解】由已知得,離心率,所以,故橢圓E的方程為.【小問2詳解】當直線l的斜率存在時,設,,,聯立方程組得,,所以,..,,所以.所以.當直線l的斜率不存在時,,聯立方程組,得,.,,所以.綜上,存在實數使得恒成立.【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯立,消去x(或y)建立一元二次方程,然后借助根與系數的關系,并結合題設條件建立有關參變量的等量關系(2)涉及到直線方程的設法時,務必考慮全面,不要忽略直線斜率為0或不存在等特殊情形.19、(1);(2).【解析】(1)由題意分析圓心符合拋物線定義,然后求軌跡方程;(2)直接聯立方程組,求出弦長.【詳解】解:(1)圓過點,且與直線相切點到直線的距離等于由拋物線定義可知點的軌跡是以為焦點、以為準線的拋物線,依題意,設點的軌跡方程為,則,解得,所以,動圓圓心的軌跡方程是(2)依題意可知直線,設聯立,得,則,所以,線段的長度為【點睛】(1)待定系數法、代入法可以求二次曲線的標準方程;(2)“設而不求”是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題.20、(1)單調遞增區間為,單調遞減區間為(2)①1;②證明見解析【解析】(1)求出函數的導數,在定義域內,解關于導函數的不等式,求出函數的單調區間即可;(2)①分離參數得,令,利用函數的單調性求出的最大值即可;②由①知:,時取“=”,令,即,最后累加即可.【小問1詳解】由已知條件得,其中的定義域為,則,當時,,當時,,綜上所述可知:的單調遞增區間為,單調遞減區間為;【小問2詳解】①由恒成立,即恒成立,令,則,當時,,當時,,∴在上單調遞增,上單調遞減,∴,∴的最小值為1.②由①知:,時取“=”,令,得,∴,當時,.21、(1)(2)當0≤a<2時,f(x)max=8-5a;當a≥2時,f(x)max=-a【解析】(1)根據導數的幾何意義即可求解;(2)先求函數的導數,令導數等于零,求得兩極值點,然后討論極值點是否在所給區間內,再結合比較區間端點處的函數值的大小,可得答案.【小問1詳解】因為,所以,即a=0,所以,f(1)=1,所以切線方程:y-1=3(x-1),即.【小問2詳解】,令得,①當a=0時,f(x)=x3在[0,2]上為單調遞增函數,所以f(x)max=f(2)=8;②當時,即a≥3時,f(x)在[0,2]上為單調遞減函數,所以;③當時,即0<a<3時,f(x)在上單調遞減,在單調遞增,所以f(x)=max{f(0),f(2)},(i)若f(0)≥f(2),即2≤a<3,f(x)max=f(0)=-a,(ii)若f(0)<f(2),即0<a<2,f(x)max=f(2)=8-5a;綜上,當0≤a<2時,f(x)max=f(2)=8-5a;當a≥2時,f(x)max=f(0)=-a22、(1)證明見解析;(2)為的中點,理由見解析.【解析】(1)取的中點,連接,利用面面垂直的性質定理可得出平面,可得出,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 火力發電廠熱經濟性評價考核試卷
- 能源零售商的市場分析能力考核試卷
- 礦山開采對空氣質量影響評估考核試卷
- 吉林省長春市朝陽區新朝陽實驗校2025屆初三寒假自主學習綜合練習英語試題含答案
- 蘇州工業職業技術學院《生物儀器分析》2023-2024學年第二學期期末試卷
- 寧夏工業職業學院《信號與系統》2023-2024學年第二學期期末試卷
- 上海戲劇學院《大學生寫作》2023-2024學年第二學期期末試卷
- 江西省寧師中學2025年高三下學期第一次教學診斷物理試題含解析
- 江西農業大學南昌商學院《施工組織》2023-2024學年第二學期期末試卷
- 天津外國語大學《藥學細胞生物學實驗》2023-2024學年第二學期期末試卷
- 杭州市蕭山區機關事業單位招聘筆試真題2023
- 中國假發行業供需態勢、競爭格局及投資前景分析報告(智研咨詢)
- 四川政采評審專家入庫考試基礎題復習測試附答案
- 一輪復習課件:《古代歐洲文明》
- 安裝懸浮地板合同范例
- 土族課件教學課件
- 團體醫療補充保險方案
- DB41T 1836-2019 礦山地質環境恢復治理工程施工質量驗收規范
- 2024年江蘇省高考政治試卷(含答案逐題解析)
- 培訓調查問卷分析報告
- 肝癌肝移植中國指南解讀
評論
0/150
提交評論