山西省同煤一中聯盟校2023-2024學年數學高二上期末復習檢測試題含解析_第1頁
山西省同煤一中聯盟校2023-2024學年數學高二上期末復習檢測試題含解析_第2頁
山西省同煤一中聯盟校2023-2024學年數學高二上期末復習檢測試題含解析_第3頁
山西省同煤一中聯盟校2023-2024學年數學高二上期末復習檢測試題含解析_第4頁
山西省同煤一中聯盟校2023-2024學年數學高二上期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省同煤一中聯盟校2023-2024學年數學高二上期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點到準線的距離為()A. B.C. D.2.過雙曲線的右焦點F作一條漸近線的垂線,垂足為M,且FM的中點A在雙曲線上,則雙曲線離心率e等于()A. B.C. D.3.過點且與原點距離最大的直線方程是()A. B.C. D.4.已知數列滿足,其前項和為,,.若數列的前項和為,則滿足成立的的最小值為()A.10 B.11C.12 D.135.阿基米德不僅是著名的物理學家,也是著名的數學家,他利用“逼近法”得到橢圓的面積公式,設橢圓的長半軸長、短半軸長分別為,則橢圓的面積公式為,若橢圓的離心率為,面積為,則橢圓的標準方程為()A.或 B.或C.或 D.或6.若動圓的圓心在拋物線上,且恒過定點,則此動圓與直線()A.相交 B.相切C.相離 D.不確定7.已知平面的一個法向量為,且,則點A到平面的距離為()A. B.C. D.18.經過點的直線的傾斜角為,則A. B.C. D.9.已知雙曲線,且三個數1,,9成等比數列,則下列結論正確的是()A.的焦距為 B.的漸近線方程為C.的離心率為 D.的虛軸長為10.函數的單調增區間為()A. B.C. D.11.函數的定義域為,,對任意,,則的解集為()A. B.C. D.12.如果橢圓上一點到焦點的距離等于6,則線段的中點到坐標原點的距離等于()A.7 B.10C.12 D.14二、填空題:本題共4小題,每小題5分,共20分。13.等差數列的前n項和分別為,若對任意正整數n都有,則的值為___________.14.數學家歐拉年在其所著的《三角形幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線,已知的頂點、,其歐拉線的方程為,則的外接圓方程為______.15.一條直線經過,并且傾斜角是直線的傾斜角的2倍,則直線的方程為__________16.已知函數,則_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是等差數列,是各項都為正數的等比數列,,再從①;②;③這三個條件中選擇___________,___________兩個作為已知.(1)求數列的通項公式;(2)求數列的前項和.18.(12分)已知圓,點,點是圓上任意一點,線段的垂直平分線交直線于點,點的軌跡記為曲線.(1)求曲線的方程;(2)已知曲線上一點,動圓,且點在圓外,過點作圓的兩條切線分別交曲線于點,.(i)求證:直線的斜率為定值;(ii)若直線與交于點,且時,求直線的方程.19.(12分)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,O為底面正方形ABCD對角線的交點,E為PD的中點,且PA=AD.(1)求證:PB∥平面EAC;(2)求直線BD與平面EAC所成角的正弦值.20.(12分)已知橢圓的左,右焦點分別為,三個頂點(左、右頂點和上頂點)構成的三角形的面積為,離心率為方程的根.(1)求橢圓方程;(2)橢圓的一個內接平行四邊形的一組對邊分別過點和,如圖,若這個平行四邊形面積為,求平行四邊形的四個頂點的縱坐標的乘積.21.(12分)已知數列是公差不為0的等差數列,數列是公比為2的等比數列,是,的等比中項,,.(1)求數列,的通項公式;(2)求數列的前項和.22.(10分)已知雙曲線C的方程為(),離心率為.(1)求雙曲線的標準方程;(2)過的直線交曲線于兩點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據拋物線的幾何性質可得選項.【詳解】由得,所以,所以拋物線的焦點到準線的距離為1,故選:B.2、A【解析】根據題意可表示出漸近線方程,進而可知的斜率,表示出直線方程,求出的坐標進而求得A點坐標,代入雙曲線方程整理求得和的關系式,進而求得離心率【詳解】:由題意設相應的漸近線:,則根據直線的斜率為,則的方程為,聯立雙曲線漸近線方程求出,則,,則的中點,把中點坐標代入雙曲線方程中,即,整理得,即,求得,即離心率為,故答案為:3、A【解析】過點且與原點O距離最遠的直線垂直于直線,再由點斜式求解即可【詳解】過點且與原點O距離最遠的直垂直于直線,,∴過點且與原點O距離最遠的直線的斜率為,∴過點且與原點O距離最遠的直線方程為:,即.故選:A4、A【解析】根據題意和對數的運算公式可證得為以2為首項,2為公比的等比數列,求出,進而得到,利用裂項相消法求得,再解不等式即可.【詳解】由,又,所以數列是以2為首項,2為公比的等比數列,故,則,所以,由,得,即,有,又,所以,即n的最小值為10.故選:A5、B【解析】根據題意列出的關系式,即可求得,再分焦點在軸與軸兩種情況寫出標準方程.【詳解】根據題意,可得,所以橢圓的標準方程為或.故選:B6、B【解析】根據題意得定點為拋物線的焦點,為準線,進而根據拋物線的定義判斷即可.【詳解】解:由題知,定點為拋物線的焦點,為準線,因為動圓的圓心在拋物線上,且恒過定點,所以根據拋物線的定義得動圓的圓心到直線的距離等于圓心到定點,即圓心到直線的距離等于動圓的半徑,所以動圓與直線相切.故選:B7、B【解析】直接由點面距離的向量公式就可求出【詳解】∵,∴,又平面的一個法向量為,∴點A到平面的距離為故選:B8、A【解析】由題意,得,解得;故選A考點:直線的傾斜角與斜率9、D【解析】先求得的值,然后根據雙曲線的知識對選項進行分析,從而確定正確答案.【詳解】方程表示雙曲線,則,成等比數列,則,所以雙曲線方程為,所以,故雙曲線的焦距為,A選項錯誤.漸近線方程為,B選項錯誤.離心率,C選項錯誤.虛軸長,D選項正確.故選:D10、D【解析】先求定義域,再求導數,令解不等式,即可.【詳解】函數的定義域為令,解得故選:D【點睛】本題考查利用導數研究函數的單調性,屬于中檔題.11、B【解析】構造函數,利用導數判斷出函數在上的單調性,將不等式轉化為,利用函數的單調性即可求解.【詳解】依題意可設,所以.所以函數在上單調遞增,又因為.所以要使,即,只需要,故選B.【點睛】本題考查利用函數的單調性解不等式,解題的關鍵就是利用導數不等式的結構構造新函數來解,考查分析問題和解決問題的能力,屬于中等題.12、A【解析】可由橢圓方程先求出,在利用橢圓的定義求出,利用已知求解出,再取的中點,連接,利用中位線,即可求解出線段的中點到坐標原點的距離.【詳解】因為橢圓,,所以,結合得,,取的中點,連接,所以為的中位線,所以.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##0.68【解析】利用等差數列求和公式與等差中項進行求解.【詳解】由題意得:,同理可得:,所以故答案為:14、【解析】求出線段的垂直平分線方程,與歐拉線方程聯立,求出的外接圓圓心坐標,并求出外接圓的半徑,由此可得出的外接圓方程.【詳解】直線的斜率為,線段的中點為,所以,線段的垂直平分線的斜率為,則線段垂直平分線方程為,即,聯立,解得,即的外心為,所以,的外接圓的半徑為,因此,的外接圓方程為.故答案為:.【點睛】方法點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關圓的一些常用性質和定理如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線;(2)待定系數法:根據條件設出圓的方程,再由題目給出的條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數,所以應該有三個獨立等式15、【解析】先求出直線傾斜角,從而可求得直線的傾斜角,則可求出直線的斜率,進而可求出直線的方程【詳解】因為直線的斜率為,所以直線的傾斜角為,所以直線的傾斜角為,所以直線的斜率為,因為直線經過,所以直線的方程為,即,故答案為:16、【解析】利用函數的解析式由內到外逐層計算可得的值.【詳解】,,因此,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、答案見解析【解析】(1)根據題設條件可得關于基本量的方程組,求解后可得的通項公式.(2)利用公式法可求數列的前項和.【詳解】解:選擇條件①和條件②(1)設等差數列的公差為,∴解得:,.∴,.(2)設等比數列的公比為,,∴解得,.設數列的前項和為,∴.選擇條件①和條件③:(1)設等差數列的公差為,∴解得:,.∴.(2),設等比數列的公比為,.∴,解得,.設數列的前項和為,∴.選擇條件②和條件③:(1)設等比數列的公比為,,∴,解得,,.設等差數列的公差為,∴,又,故.∴.(2)設數列的前項和為,由(1)可知.【點睛】方法點睛:等差數列或等比數列的處理有兩類基本方法:(1)利用基本量即把數學問題轉化為關于基本量的方程或方程組,再運用基本量解決與數列相關的問題;(2)利用數列的性質求解即通過觀察下標的特征和數列和式的特征選擇合適的數列性質處理數學問題18、(1)(2)(i)答案見解析(ii)或【解析】(1)通過幾何關系可知,且,由此可知點的軌跡是以點、為焦點,且實軸長為的雙曲線,通過雙曲線的定義即可求解;(2)(i)設點,,直線的方程為,將直線方程與雙曲線方程聯立利用韋達定理及求出,即得到直線的斜率為定值;(ii)由(i)可知,由已知可得,聯立方程即可求出,的值,代入即可求出的值,即可得到直線方程.【小問1詳解】由題意可知,∵,且,∴根據雙曲線的定義可知,點的軌跡是以點、為焦點,且實軸長為的雙曲線,即,,,則點的軌跡方程為;【小問2詳解】(i)設點,,直線的方程為,聯立得,其中,且,,,∵曲線上一點,∴,由已知條件得直線和直線關于對稱,則,即,整理得,,,,即,則或,當,直線方程為,此直線過定點,應舍去,故直線的斜率為定值.(ii)由(i)可知,由已知得,即,當時,,,即,,,解得或,但是當時,,故應舍去,當時,直線方程為,當時,,即,,,解得(舍去)或,當時,直線方程為,故直線的方程為或.19、(1)證明見解析(2)【解析】(1)利用線面平行的判斷定理,證明線線平行,即可證明;(2)建立空間直角坐標系,求平面的法向量,利用公式,即可求解.【小問1詳解】連結EO,由題意可得O為BD的中點,又E是PD的中點,∴PB∥EO,又∵EO平面EAC,PB平面EAC,∴PB∥平面EAC;【小問2詳解】如圖,以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,設AD=2,則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),∴=(-2,2,0),=(0,1,1),=(2,2,0),設平面EAC的法向量為=(x,y,z),則,即,即,令y=1得x=-1,z=-1,∴平面EAC的一個法向量為=(-1,1,-1),∴設直線BD與平面EAC所成的角為θ,則sinθ=∴直線BD與平面EAC所成的角的正弦值.20、(1);(2).【解析】(1)由橢圓離心率的性質及一元二次方程的根可得,再由橢圓參數關系、已知三角形面積求橢圓參數,即可得橢圓方程.(2)設直線,聯立橢圓方程并結合韋達定理求,進而可得,再根據求參數t,可得,結合橢圓的對稱性求,即可求結果.【小問1詳解】由的根為,所以橢圓的離心率,依題意,,解得,即橢圓的方程為;【小問2詳解】設直線,聯立,消去得,由韋達定理得:,所以,所以,所以橢圓的內接平行四邊形面積.所以,解得或(舍去),所以,根據橢圓的對稱性知:,故平行四邊形的四個頂點的縱坐標的乘積為.21、(1)(2)【解析】(1)根據是,的等比中項,且,,由求解;(2)由(1)得到,再利用錯位相減法求解.【小問1詳解】解:因為是,的等比中項,且,,所以,解得,,所以;【小問2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論