




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省安吉縣上墅私立高級中學2023年高三第一次調研測試數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.2.已知函數(其中,,)的圖象關于點成中心對稱,且與點相鄰的一個最低點為,則對于下列判斷:①直線是函數圖象的一條對稱軸;②點是函數的一個對稱中心;③函數與的圖象的所有交點的橫坐標之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③3.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.4.若的展開式中的系數為-45,則實數的值為()A. B.2 C. D.5.一小商販準備用元錢在一批發市場購買甲、乙兩種小商品,甲每件進價元,乙每件進價元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購買甲、乙兩種商品的件數應分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件6.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.7.將函數的圖象沿軸向左平移個單位長度后,得到函數的圖象,則“”是“是偶函數”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點,則異面直線與所成角的余弦值為A.0 B. C. D.19.執行如圖所示的程序框圖,若輸出的,則輸入的整數的最大值為()A.7 B.15 C.31 D.6310.已知復數(為虛數單位,),則在復平面內對應的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知定義在上的可導函數滿足,若是奇函數,則不等式的解集是()A. B. C. D.12.如圖,在三棱柱中,底面為正三角形,側棱垂直底面,.若分別是棱上的點,且,,則異面直線與所成角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若正三棱柱的所有棱長均為2,點為側棱上任意一點,則四棱錐的體積為__________.14.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)15.已知均為非負實數,且,則的取值范圍為______.16.已知多項式滿足,則_________,__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)隨著互聯網金融的不斷發展,很多互聯網公司推出余額增值服務產品和活期資金管理服務產品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財富通”,京東旗下“京東小金庫”.為了調查廣大市民理財產品的選擇情況,隨機抽取1200名使用理財產品的市民,按照使用理財產品的情況統計得到如下頻數分布表:分組頻數(單位:名)使用“余額寶”使用“財富通”使用“京東小金庫”30使用其他理財產品50合計1200已知這1200名市民中,使用“余額寶”的人比使用“財富通”的人多160名.(1)求頻數分布表中,的值;(2)已知2018年“余額寶”的平均年化收益率為,“財富通”的平均年化收益率為.若在1200名使用理財產品的市民中,從使用“余額寶”和使用“財富通”的市民中按分組用分層抽樣方法共抽取7人,然后從這7人中隨機選取2人,假設這2人中每個人理財的資金有10000元,這2名市民2018年理財的利息總和為,求的分布列及數學期望.注:平均年化收益率,也就是我們所熟知的利息,理財產品“平均年化收益率為”即將100元錢存入某理財產品,一年可以獲得3元利息.18.(12分)記為數列的前項和,已知,等比數列滿足,.(1)求的通項公式;(2)求的前項和.19.(12分)已知,.(1)解;(2)若,證明:.20.(12分)選修4-5:不等式選講已知函數(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實數的取值范圍.21.(12分)已知函數,其中,為自然對數的底數.(1)當時,證明:對;(2)若函數在上存在極值,求實數的取值范圍。22.(10分)某企業現有A.B兩套設備生產某種產品,現從A,B兩套設備生產的大量產品中各抽取了100件產品作為樣本,檢測某一項質量指標值,若該項質量指標值落在內的產品視為合格品,否則為不合格品.圖1是從A設備抽取的樣本頻率分布直方圖,表1是從B設備抽取的樣本頻數分布表.圖1:A設備生產的樣本頻率分布直方圖表1:B設備生產的樣本頻數分布表質量指標值頻數2184814162(1)請估計A.B設備生產的產品質量指標的平均值;(2)企業將不合格品全部銷毀后,并對合格品進行等級細分,質量指標值落在內的定為一等品,每件利潤240元;質量指標值落在或內的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120元.根據圖1、表1的數據,用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產品中抽到一件相應等級產品的概率.企業由于投入資金的限制,需要根據A,B兩套設備生產的同一種產品每件獲得利潤的期望值調整生產規模,請根據以上數據,從經濟效益的角度考慮企業應該對哪一套設備加大生產規模?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
設雙曲線的漸近線方程為,與拋物線方程聯立,利用,求出的值,得到的值,求出關系,進而判斷大小,結合橢圓的焦距為2,即可求出結論.【詳解】設雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質,要注意雙曲線焦點位置,屬于中檔題.2、C【解析】分析:根據最低點,判斷A=3,根據對稱中心與最低點的橫坐標求得周期T,再代入最低點可求得解析式為,依次判斷各選項的正確與否.詳解:因為為對稱中心,且最低點為,所以A=3,且由所以,將帶入得,所以由此可得①錯誤,②正確,③當時,,所以與有6個交點,設各個交點坐標依次為,則,所以③正確所以選C點睛:本題考查了根據條件求三角函數的解析式,通過求得的解析式進一步研究函數的性質,屬于中檔題.3、D【解析】
過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.4、D【解析】
將多項式的乘法式展開,結合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數為,∴解得.故選:D.【點睛】本題考查了二項式定理展開式通項的簡單應用,指定項系數的求法,屬于基礎題.5、D【解析】
由題意列出約束條件和目標函數,數形結合即可解決.【詳解】設購買甲、乙兩種商品的件數應分別,利潤為元,由題意,畫出可行域如圖所示,顯然當經過時,最大.故選:D.【點睛】本題考查線性目標函數的線性規劃問題,解決此類問題要注意判斷,是否是整數,是否是非負數,并準確的畫出可行域,本題是一道基礎題.6、C【解析】
利用三角形與相似得,結合雙曲線的定義求得的關系,從而求得雙曲線的漸近線方程。【詳解】設,,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質、漸近線方程求解,考查數形結合思想,考查邏輯推理能力和運算求解能力。7、A【解析】
求出函數的解析式,由函數為偶函數得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數的圖象沿軸向左平移個單位長度,得到的圖象對應函數的解析式為,若函數為偶函數,則,解得,當時,.因此,“”是“是偶函數”的充分不必要條件.故選:A.【點睛】本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數解析式以及利用三角函數的奇偶性求參數,考查運算求解能力與推理能力,屬于中等題.8、B【解析】
根據題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.9、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.10、B【解析】
分別比較復數的實部、虛部與0的大小關系,可判斷出在復平面內對應的點所在的象限.【詳解】因為時,所以,,所以復數在復平面內對應的點位于第二象限.故選:B.【點睛】本題考查復數的幾何意義,考查學生的計算求解能力,屬于基礎題.11、A【解析】
構造函數,根據已知條件判斷出的單調性.根據是奇函數,求得的值,由此化簡不等式求得不等式的解集.【詳解】構造函數,依題意可知,所以在上遞增.由于是奇函數,所以當時,,所以,所以.由得,所以,故不等式的解集為.故選:A【點睛】本小題主要考查構造函數法解不等式,考查利用導數研究函數的單調性,考查化歸與轉化的數學思想方法,屬于中檔題.12、B【解析】
建立空間直角坐標系,利用向量法計算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側棱垂直于底面.設的中點為,建立空間直角坐標系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依題意得,再求點到平面的距離為點到直線的距離,用公式所以即可得出答案.【詳解】解:正三棱柱的所有棱長均為2,則,點到平面的距離為點到直線的距離所以,所以.故答案為:【點睛】本題考查椎體的體積公式,考查運算能力,是基礎題.14、①②④【解析】
①∵,∴平面
,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據線面垂直的判定和性質或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關于面對稱的點,使得點在平面內,根據對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設正方體的棱長為2.則:,,所以,設面的法向量為,則,即,令,則,設面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關于面對稱的點,使得點在平面內,則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設點的坐標為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.15、【解析】
設,可得的取值范圍,分別利用基本不等式和,把用代換,結合的取值范圍求關于的二次函數的最值即可求解.【詳解】因為,,令,則,因為,當且僅當時等號成立,所以,,即,令則函數的對稱軸為,所以當時函數有最大值為,即.當且,即,或,時取等號;因為,當且僅當時等號成立,所以,令,則函數的對稱軸為,所以當時,函數有最小值為,即,當,且時取等號,所以.故答案為:【點睛】本題考查基本不等式與二次函數求最值相結合求代數式的取值范圍;考查運算求解能力和知識的綜合運用能力;基本不等式:和的靈活運用是求解本題的關鍵;屬于綜合型、難度大型試題.16、【解析】∵多項式滿足∴令,得,則∴∴該多項式的一次項系數為∴∴∴令,得故答案為5,72三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)680元.【解析】
(1)根據題意,列方程,然后求解即可(2)根據題意,計算出10000元使用“余額寶”的利息為(元)和10000元使用“財富通”的利息為(元),得到所有可能的取值為560(元),700(元),840(元),然后根據所有可能的取值,計算出相應的概率,并列出的分布列表,然后求解數學期望即可【詳解】(1)據題意,得,所以.(2)據,得這被抽取的7人中使用“余額寶”的有4人,使用“財富通”的有3人.10000元使用“余額寶”的利息為(元).10000元使用“財富通”的利息為(元).所有可能的取值為560(元),700(元),840(元).,,.的分布列為560700840所以(元).【點睛】本題考查頻數分布表以及分布列和數學期望問題,屬于基礎題18、(1)(2)當時,;當時,.【解析】
(1)利用數列與的關系,求得;(2)由(1)可得:,,算出公比,利用等比數列的前項和公式求出.【詳解】(1)當時,,當時,,因為適合上式,所以.(2)由(1)得,,設等比數列的公比為,則,解得,當時,,當時,.【點睛】本題主要考查數列與的關系、等比數列的通項公式、前項和公式等基礎知識,考查運算求解能力..19、(1);(2)見解析.【解析】
(1)在不等式兩邊平方化簡轉化為二次不等式,解此二次不等式即可得出結果;(2)利用絕對值三角不等式可證得成立.【詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對值三角不等式可得.因此,.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用絕對值三角不等式證明不等式,考查推理能力與運算求解能力,屬于中等題.20、(Ⅰ).(Ⅱ).【解析】
詳解:(Ⅰ)當時,由,解得;當時,不成立;當時,由,解得.所以不等式的解集為.(Ⅱ)因為,所以.由題意知對,,即,因為,所以,解得.【點睛】⑴絕對值不等式解法的基本思路是:去掉絕對值號,把它轉化為一般的不等式求解,轉化的方法一般有:①絕對值定義法;②平方法;③零點區域法.⑵不等式的恒成立可用分離變量法.若所給的不等式能通過恒等變形使參數與主元分離于不等式兩端,從而問題轉化為求主元函數的最值,進而求出參數范圍.這種方法本質也是求最值.一般有:①為參數)恒成立②為參數)恒成立.21、(1)見證明;(2)【解析】
(1)利用導數說明函數的單調性,進而求得函數的最小值,得到要證明的結論;(2)問題轉化為導函數在區間上有解,法一:對a分類討論,分別研究a的不同取值下,導函數的單調性及值域,從而得到結論.法二:構造函數,利用函數的導數判斷函數的單調性求得函數的值域,再利用零點存在定理說明函數存在極值.【詳解】(1)當時,,于是,.又因為,當時,且.故當時,,即.所以,函數為上的增函數,于是,.因此,對,;(2)方法一:由題意在上存在極值,則在上存在零點,①當時,為上的增函數,注意到,,所以,存在唯一實
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 計算機四級軟件測試中的核心問題分析試題及答案
- 公司大廈食堂管理制度
- 公司債券債務管理制度
- 培訓機構鑒定管理制度
- 數據庫數據分析報告撰寫試題及答案
- 嵌入式系統開發與應用試題及答案
- 學校文具倉庫管理制度
- 信息系統監理師考試內容解析試題及答案
- 軟件項目中的測試溝通試題及答案
- 公司財務用章管理制度
- 浙江農林大學2023
- 義務教育體育與健康課程標準(2022年版)
- CNCERT-CCSC管理Ⅱ級理論考試題庫(典型600題)
- Scratch編程課件小車巡線
- 企業校園招聘宣講會ppt模板ppt
- 項目volume3修改版-舊20.commissioning servicing manualFMZ5000火災探測和滅火系統控制盤安裝調試維保手冊
- 消防安全常識二十條系列掛圖清晰版
- GB/T 32294-2015鍛制承插焊和螺紋活接頭
- GB/T 25854-2010一般起重用D形和弓形鍛造卸扣
- GB/T 23227-2018卷煙紙、成形紙、接裝紙、具有間斷或連續透氣區的材料以及具有不同透氣帶的材料透氣度的測定
- GB/T 18049-2017熱環境的人類工效學通過計算PMV和PPD指數與局部熱舒適準則對熱舒適進行分析測定與解釋
評論
0/150
提交評論