黑龍江省綏化市青岡一中2023年高二上數學期末教學質量檢測試題含解析_第1頁
黑龍江省綏化市青岡一中2023年高二上數學期末教學質量檢測試題含解析_第2頁
黑龍江省綏化市青岡一中2023年高二上數學期末教學質量檢測試題含解析_第3頁
黑龍江省綏化市青岡一中2023年高二上數學期末教學質量檢測試題含解析_第4頁
黑龍江省綏化市青岡一中2023年高二上數學期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省綏化市青岡一中2023年高二上數學期末教學質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,四棱錐的底面是矩形,設,,,是棱上一點,且,則()A. B.C. D.2.等差數列的通項公式,數列,其前項和為,則等于()A. B.C. D.3.若等軸雙曲線C過點,則雙曲線C的頂點到其漸近線的距離為()A.1 B.C. D.24.已知i是虛數單位,復數z=,則復數z的虛部為()A.i B.-iC.1 D.-15.已知點P是圓上一點,則點P到直線的距離的最大值為()A.2 B.C. D.6.在三棱錐中,平面;記直線與直線所成的角為,直線與平面所成的角為,二面角的平面角為,則()A. B.C. D.7.若拋物線上的點到其焦點的距離是到軸距離的倍,則等于A. B.1C. D.28.方程表示的曲線為()A.拋物線與一條直線 B.上半拋物線(除去頂點)與一條直線C.拋物線與一條射線 D.上半拋物線(除去頂點)與一條射線9.已知點,則滿足點到直線的距離為,點到直線距離為的直線的條數有()A.1 B.2C.3 D.410.當實數,m變化時,的最大值是()A.3 B.4C.5 D.611.已知直線經過點,且是的方向向量,則點到的距離為()A. B.C. D.12.已知三棱錐的各頂點都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數列滿足,則_______________.14.命題“,”的否定是____________.15.已知拋物線的頂點為坐標原點,焦點坐標是,則該拋物線的標準方程為___________16.設,,若將函數的圖像向左平移個單位能使其圖像與原圖像重合,則正實數的最小值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)根據下列條件求圓的方程:(1)圓心在點O(0,0),半徑r=3(2)圓心在點O(0,0),且經過點M(3,4)18.(12分)如圖,四棱臺的底面為正方形,面,(1)求證:平面;(2)若平面平面,求直線m與平面所成角的正弦值19.(12分)一位父親在孩子出生后,每月給小孩測量一次身高,得到前7個月的數據如下表所示.月齡1234567身高(單位:厘米)52566063656870(1)求小孩前7個月的平均身高;(2)求出身高y關于月齡x的回歸直線方程(計算結果精確到整數部分);(3)利用(2)的結論預測一下8個月的時候小孩的身高參考公式:20.(12分)設函數(Ⅰ)求的單調區間;(Ⅱ)若,為整數,且當時,恒成立,求的最大值.(其中為的導函數.)21.(12分)已知數列滿足且(1)求證:數列為等差數列,并求數列的通項公式;(2)設,求數列的前n項和為.22.(10分)已知命題p:點在橢圓內;命題q:函數在R上單調遞增(1)若p為真命題,求m的取值范圍;(2)若為假命題,求實數m的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據空間向量基本定理求解【詳解】由已知故選:B2、D【解析】根據裂項求和法求得,再計算即可.【詳解】解:由題意得====所以.故選:D3、A【解析】先求出雙曲線C的標準方程,再求頂點到其漸近線的距離.【詳解】設等軸雙曲線C的標準方程為,因為點在雙曲線上,所以,解得,所以雙曲線C的標準方程為,故上頂點到其一條漸近線的距離為.故選:A4、C【解析】先通過復數的除法運算求出z,進而求出虛部.【詳解】由題意,,則z的虛部為1.故選:C.5、C【解析】求出圓心到直線的距離,由這個距離加上半徑即得【詳解】由圓,可得圓心坐標,半徑,則圓心C到直線的距離為,所以點P到直線l的距離的最大值為.故選:C6、A【解析】先得到三棱錐的每一個面都是直角三角形,然后可得與平面所成的角,二面角的平面角,在直角三角形中算出他們的余弦值,利用向量法計算直線與直線所成的角為的余弦值,然后比較大小.【詳解】令,由平面,且平面,又,,面三棱錐的每一個面都是直角三角形.與平面所成的角,二面角的平面角,由已知可得,,,又,則所以,又均為銳角,故選:A.7、D【解析】根據拋物線的定義及題意可知3x0=x0+,得出x0求得p,即可得答案【詳解】由題意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故選D【點睛】本題主要考查了拋物線的定義和性質.考查了考生對拋物線定義的掌握和靈活應用,屬于基礎題8、B【解析】化簡得出或,由此可得出方程表示的曲線.【詳解】由可得或,所以,方程表示的曲線為上半拋物線(除去頂點)與一條直線,故選:B.9、D【解析】以為圓心,為半徑,為圓心,為半徑分別畫圓,將所求轉化為求圓與圓的公切線條數,判斷兩圓的位置關系,從而得公切線條數.【詳解】以為圓心,為半徑,為圓心,為半徑分別畫圓,如圖所示,由題意,滿足點到直線的距離為,點到直線距離為的直線的條數即為圓與圓的公切線條數,因為,所以兩圓外離,所以兩圓的公切線有4條,即滿足條件的直線有4條.故選:D【點睛】解答本題的關鍵是將滿足點到直線的距離為,點到直線距離為的直線的條數轉化為圓與圓的公切線條數,從而根據圓與圓的位置關系判斷出公切線條數.10、D【解析】根據點到直線的距離公式可知可以表示單位圓上點到直線的距離,利用圓的性質結合圖形即得.【詳解】由題可知,可以表示單位圓上點到直線的距離,設,因直線,即表示恒過定點,根據圓的性質可得.故選:D.11、B【解析】求出,根據點到直線的距離的向量公式進行求解.【詳解】因為,為的一個方向向量,所以點到直線的距離.故選:B12、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點睛】與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數量關系,并作出合適的截面圖,如球內切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用來求得,進而求得正確答案.【詳解】,,是數列是首項為,公差為的等差數列,所以,所以.故答案為:14、,【解析】根據全稱命題量詞的否定即可得出結果.【詳解】命題“”的否定是“,”故答案為:15、【解析】根據焦點坐標即可得到拋物線的標準方程【詳解】因為拋物線的頂點為坐標原點,焦點坐標是,所以,解得,拋物線的標準方程為故答案為:16、【解析】根據正弦型函數圖像平移法則和正弦函數性質進行解題.【詳解】解:由題意得:函數的圖像向左平移個單位后得:該函數與原函數圖像重合故可知,即故當時,最小正實數.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)x2+y2=9(2)x2+y2=25【解析】(1)直接根據圓心坐標和半徑,即可得到答案;(2)利用兩點間的距離公式,求出圓的半徑,即可得到答案;【小問1詳解】根據題意,圓心在點O(0,0),半徑r=3,則要求圓的方程為x2+y2=9;【小問2詳解】圓心在點O(0,0),且經過點M(3,4),要求圓的半徑r==5,則要求圓的方程為x2+y2=25;18、(1)證明見解析;(2).【解析】(1):連結交交于點O,連結,,通過四棱臺的性質以及給定長度證明,從而證出,利用線面平行的判定定理可證明面;(2)利用線面平行的性質定理以及基本事實可證明,即求與平面所成角的正弦值;通過條件以及面面垂直的判定定理可證明面面,則為與平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【詳解】(1)證明:連結交交于點O,連結,,由多面體為四棱臺可知四點共面,且面面,面面,面面,∴,∵和均為正方形,,∴,所以為平行四邊形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直線m與平面所成角可轉化為求與平面所成角,∵和均為正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,設O在面的投影為M,則,∴為與平面所成角,由,可得,又∵,∴∴,直線m與平面所成角的正弦值為.【點睛】思路點睛:(1)找兩個平面的交線,可通過兩個平面的交點找到,也可利用線面平行的性質找和交線的平行直線;(2)求直線和平面所成角,過直線上一點做平面的垂線,則垂足和斜足連線與直線所成角即為直線和平面所成角.19、(1)62;(2);(3)74.【解析】(1)直接利用平均數的計算公式即可求解;(2)套公式求出b、a,求出回歸方程;(3)把x=8代入回歸方程即可求出.【小問1詳解】小孩前7個月的平均身高為.【小問2詳解】(2)設回歸直線方程是.由題中的數據可知.,..計算結果精確到整數部分,所以,于是,所以身高y關于月齡x的回歸直線方程為.【小問3詳解】由(2)知,.當x=8時,y=3×8+50=74,所以預測8個月的時候小孩的身高為74厘米.20、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)的定義域為,,分和兩種情況解不等式和即可得單調遞增區間和單調遞減區間;(Ⅱ)由題意可得對于恒成立,分離可得,令,只需,利用導數求最小值即可求解.【詳解】(Ⅰ)函數的定義域為,當時,對于恒成立,此時函數在上單調遞增;當時,由可得;由可得;此時在上單調遞減,在上單調遞增;綜上所述:當時,函數的單調遞增區間為,當時,單調遞減區間為,單調遞增區間為,(Ⅱ)若,由可得,因為,所以,所以所以對于恒成立,令,則,,令,則對于恒成立,所以在單調遞增,因為,,所以在上存在唯一零點,即,可得:,當時,,則,當時,,則,所以在上單調遞減,在上單調遞增,所以,因為,所以的最大值為.【點睛】方法點睛:利用導數研究函數單調性的方法:(1)確定函數的定義域;求導函數,由(或)解出相應的的范圍,對應的區間為的增區間(或減區間);(2)確定函數的定義域;求導函數,解方程,利用的根將函數的定義域分為若干個子區間,在這些子區間上討論的正負,由符號確定在子區間上的單調性.21、(1)證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論