2024屆試題山西省懷仁市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁
2024屆試題山西省懷仁市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁
2024屆試題山西省懷仁市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁
2024屆試題山西省懷仁市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁
2024屆試題山西省懷仁市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆試題山西省懷仁市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.春秋時(shí)期孔子及其弟子所著的《論語·顏淵》中有句話:“非禮勿視,非禮勿聽,非禮勿言,非禮勿動(dòng).”意思是:不符合禮的不看,不符合禮的不聽,不符合禮的不說,不符合禮的不做.“非禮勿聽”可以理解為:如果不合禮,那么就不聽.從數(shù)學(xué)角度來說,“合禮”是“聽”的()A.充分條件 B.必要條件C.充要條件 D.既不充分也不必要條件2.已知集合,集合或,是實(shí)數(shù)集,則()A. B.C. D.3.已知橢圓上一點(diǎn)到橢圓一個(gè)焦點(diǎn)的距離是,則點(diǎn)到另一個(gè)焦點(diǎn)的距離為()A.2 B.3C.4 D.54.下列命題中正確的是()A.若為真命題,則為真命題B.在中“”是“”的充分必要條件C.命題“若,則或”的逆否命題是“若或,則”D.命題,使得,則,使得5.函數(shù)的圖象大致是()A. B.C. D.6.下列說法錯(cuò)誤的是()A.命題“,”的否定是“,”B.若“”是“或”的充分不必要條件,則實(shí)數(shù)m的最大值為2021C.“”是“函數(shù)在內(nèi)有零點(diǎn)”的必要不充分條件D.已知,且,則的最小值為97.函數(shù)在的圖象大致為()A. B.C D.8.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3C. D.29.直線的傾斜角為()A.-30° B.60°C.150° D.120°10.橢圓C:的焦點(diǎn)在x軸上,其離心率為則橢圓C的長軸長為()A.2 B.C.4 D.811.若直線的方向向量為,平面的法向量為,則()A. B.C. D.與相交但不垂直12.某制藥廠為了檢驗(yàn)?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計(jì)算得,經(jīng)查對(duì)臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”D.有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點(diǎn)與的右焦點(diǎn)重合,則__________.14.已知球的表面積是,則該球的體積為________.15.設(shè)為等差數(shù)列的前n項(xiàng)和,若,,則______16.已知數(shù)列是等差數(shù)列,若,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面ABCD,,,且,,.(1)求證:平面PAC;(2)已知點(diǎn)M是線段PD上的一點(diǎn),且,當(dāng)三棱錐的體積為1時(shí),求實(shí)數(shù)的值.18.(12分)如圖,四棱錐的底面是正方形,平面平面,E為的中點(diǎn)(1)若,證明:;(2)求直線與平面所成角的余弦值的取值范圍19.(12分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列是等比數(shù)列,,(1)求,的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和20.(12分)已知空間中三點(diǎn),,,設(shè),(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實(shí)數(shù)的值21.(12分)已知橢圓C:經(jīng)過點(diǎn),且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點(diǎn),都有.若存在,求出r的值,并求此時(shí)△AOB的面積S的取值范圍;若不存在,請(qǐng)說明理由22.(10分)某校高二年級(jí)共有男生490人和女生510人,現(xiàn)采用分層隨機(jī)抽樣的方法從該校高二年級(jí)中抽取100名學(xué)生,測得他們的身高數(shù)據(jù)(1)男生和女生應(yīng)各抽取多少人?(2)若樣本中男生和女生的平均身高分別為173.6、162.2厘米,請(qǐng)估計(jì)該校高二年級(jí)學(xué)生的平均身高

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】如果不合禮,那么就不聽.轉(zhuǎn)化為它的逆否命題.即可判斷出答案.【詳解】如果不合禮,那么就不聽的逆否命題為:如果聽,那么就合理.故“合禮”是“聽”的必要條件.故選:B.2、A【解析】先化簡集合,再由集合的交集、補(bǔ)集運(yùn)算求解即可【詳解】,或,故故選:A3、C【解析】根據(jù)橢圓的定義,結(jié)合題意,即可求得結(jié)果.【詳解】設(shè)橢圓的兩個(gè)焦點(diǎn)分別為,故可得,又到橢圓一個(gè)焦點(diǎn)的距離是,故點(diǎn)到另一個(gè)焦點(diǎn)的距離為.故選:.4、B【解析】A選項(xiàng),當(dāng)一真一假時(shí)也滿足條件,但不滿足為真命題;B選項(xiàng),可以使用正弦定理和大邊對(duì)大角,大角對(duì)大邊進(jìn)行證明;C選項(xiàng),利用逆否命題的定義進(jìn)行判斷,D選項(xiàng),特稱命題的否定,把存在改為任意,把結(jié)論否定,故可判斷D選項(xiàng).【詳解】若為真命題,則可能均為真,或一真一假,則可能為真命題,也可能為假命題,故A錯(cuò)誤;在中,由正弦定理得:,若,則,從而,同理,若,則由正弦定理得,,所以,故在中“”是“”的充分必要條件,B正確;命題“若,則或”的逆否命題是“若且,則”,故C錯(cuò)誤;命題,使得,則,使得,故D錯(cuò)誤.故選:B5、A【解析】根據(jù)函數(shù)的定義域及零點(diǎn)的情況即可得到答案.【詳解】函數(shù)的定義域?yàn)椋瑒t排除選項(xiàng)、,當(dāng)時(shí),,則在上單調(diào)遞減,且,,由零點(diǎn)存在定理可知在上存在一個(gè)零點(diǎn),則排除,故選:.6、C【解析】對(duì)于A:用存在量詞否定全稱命題,直接判斷;對(duì)于B:根據(jù)充分不必要條件直接判斷;對(duì)于C:判斷出“”是“函數(shù)在內(nèi)有零點(diǎn)”的充分不必要條件,即可判斷;對(duì)于D:利用基本不等式求最值.【詳解】對(duì)于A:用存在量詞否定全稱命題,所以命題“,”的否定是“,”.故A正確;對(duì)于B:若“”是“或”的充分不必要條件,所以,即實(shí)數(shù)m的最大值為2021.故B正確;對(duì)于C:“函數(shù)在內(nèi)有零點(diǎn)”,則,解得:或,所以“”是“函數(shù)在內(nèi)有零點(diǎn)”的充分不必要條件.故C錯(cuò)誤;對(duì)于D:已知,且,所以(當(dāng)且僅當(dāng),即時(shí)取等號(hào))故D正確.故選:C7、D【解析】函數(shù)|在[–2,2]上是偶函數(shù),其圖象關(guān)于軸對(duì)稱,因?yàn)椋耘懦x項(xiàng);當(dāng)時(shí),有一零點(diǎn),設(shè)為,當(dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù)故選:D.8、D【解析】根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設(shè)與軸交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.9、C【解析】根據(jù)直線斜率即可得傾斜角.【詳解】設(shè)直線的傾斜角為由已知得,所以直線的斜率,由于,故選:C.10、C【解析】根據(jù)橢圓的離心率,即可求出,進(jìn)而求出長軸長.【詳解】由橢圓的性質(zhì)可知,橢圓的離心率為,則,即所以橢圓C的長軸長為故選:C.【點(diǎn)睛】本題主要考查了橢圓的幾何性質(zhì),屬于基礎(chǔ)題.11、B【解析】通過判斷直線的方向向量與平面的法向量的關(guān)系,可得結(jié)論【詳解】因?yàn)椋裕浴危驗(yàn)橹本€的方向向量為,平面的法向量為,所以,故選:B12、C【解析】根據(jù)的值與臨界值的大小關(guān)系進(jìn)行判斷.【詳解】∵,,∴在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”,C對(duì),由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯(cuò),由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯(cuò),由已知數(shù)據(jù)沒有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用,D錯(cuò),故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出拋物線的焦點(diǎn)坐標(biāo)即為的右焦點(diǎn)可得答案.【詳解】由題意可知:拋物線的焦點(diǎn)坐標(biāo)為,由題意知表示焦點(diǎn)在軸的橢圓,在橢圓中:,所以,因?yàn)椋?故答案為:.14、【解析】設(shè)球的半徑為r,代入表面積公式,可解得,代入體積公式,即可得答案.【詳解】設(shè)球的半徑為r,則表面積,解得,所以體積,故答案為:【點(diǎn)睛】本題考查已知球的表面積求體積,關(guān)鍵是求出半徑,再進(jìn)行求解,考查基礎(chǔ)知識(shí)掌握程度,屬基礎(chǔ)題.15、36【解析】利用等差數(shù)列前n項(xiàng)和的性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)闉榈炔顢?shù)列的前n項(xiàng)和,所以也成等差數(shù)列,即成等差數(shù)列,所以,故答案為:16、8【解析】利用計(jì)算可得答案.【詳解】設(shè)等差數(shù)列的公差為,故答案為:8.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)3【解析】(1)證明出,且,從而證明出線面垂直;(2)先用椎體體積公式求出,利用體積之比得到線段之比,從而得到的值.【小問1詳解】證明:∵平面ABCD,且平面ABCD,∴.又因?yàn)椋遥嗨倪呅蜛BCD為直角梯形.又因?yàn)椋椎茫啵?又因?yàn)锳C,PA是平面PAC的兩條相交直線,∴平面PAC.【小問2詳解】由(1)知且,∴.又∵平面ABCD,.又∵,∴,∴點(diǎn)M到平面ABC的距離為,∴,∴.18、(1)證明見解析;(2).【解析】(1)取的中點(diǎn)F,連接.先證明,,即證平面,原題即得證;(2)分別取的中點(diǎn)G,H,連接,證明為直線與平面所成的角,設(shè)正方形的邊長為1,,在中,,即得解.【小問1詳解】解:取的中點(diǎn)F,連接因?yàn)椋瑒t為正三角形,所以因?yàn)槠矫嫫矫妫瑒t平面因?yàn)槠矫妫瑒t.①因?yàn)樗倪呅螢檎叫危珽為的中點(diǎn),則,所以,從而,所以.②又平面,結(jié)合①②知,平面,所以【小問2詳解】解:分別取的中點(diǎn)G,H,則,又,,則,所以四邊形為平行四邊形,從而.因?yàn)椋瑒t因?yàn)槠矫嫫矫妫瑒t平面,從而,因?yàn)槠矫妫云矫妫瑥亩矫孢B接,則為直線與平面所成的角.設(shè)正方形的邊長為1,,則從而,.在中,因?yàn)楫?dāng)時(shí),單調(diào)遞增,則,所以直線與平面所成角的余弦值的取值范圍是.19、(1),(2)【解析】(1)利用求出通項(xiàng)公式,根據(jù)已知求出公比即可得出的通項(xiàng)公式;(2)利用錯(cuò)位相減法可求解.【小問1詳解】因?yàn)閿?shù)列的前項(xiàng)和為,且,當(dāng)時(shí),,當(dāng)時(shí),,滿足,所以,設(shè)等比數(shù)列的公比為,因?yàn)椋裕獾茫裕弧拘?詳解】因?yàn)椋瑒t,兩式相減得,所以.20、(1);(2)或.【解析】(1)坐標(biāo)表示出、,利用向量夾角的坐標(biāo)表示求夾角余弦值;(2)坐標(biāo)表示出k+、k-2,利用向量垂直的坐標(biāo)表示列方程求的值.【詳解】由題設(shè),=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.21、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過點(diǎn)列出方程組,求出,求出橢圓方程;(2)假設(shè)存在,分切線斜率存在和不存在分類討論,根據(jù)向量數(shù)量積為0求出r的值,表達(dá)出△AOB的面積,利用基本不等式求出的取值范圍,進(jìn)而求出△AOB面積的取值范圍.【小問1詳解】因?yàn)闄E圓C:的離心率,且過點(diǎn)所以解得所以橢圓C的方程為【小問2詳解】假設(shè)存在⊙O:滿足題意,①切線方程l的斜率存在時(shí),設(shè)切線方程l:y=kx+m與橢圓方程聯(lián)立,消去y得,(*)設(shè),,由題意知,(*)有兩解所以,即由根與系數(shù)的關(guān)系可得,所以因?yàn)椋裕椿喌茫遥琌到直線l的距離所以,又,此時(shí),所以滿足題意所以存在圓的方程為⊙O:△AOB的面積,又因?yàn)楫?dāng)k≠0時(shí)當(dāng)且僅當(dāng)即時(shí)取等號(hào)又因?yàn)椋裕援?dāng)k=0時(shí),②斜率不存在時(shí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論