2023-2024學年福建省福州市第十中學數學高二上期末檢測模擬試題含解析_第1頁
2023-2024學年福建省福州市第十中學數學高二上期末檢測模擬試題含解析_第2頁
2023-2024學年福建省福州市第十中學數學高二上期末檢測模擬試題含解析_第3頁
2023-2024學年福建省福州市第十中學數學高二上期末檢測模擬試題含解析_第4頁
2023-2024學年福建省福州市第十中學數學高二上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年福建省福州市第十中學數學高二上期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的三個頂點是,,,則邊上的高所在的直線方程為()A. B.C. D.2.經過點作圓的弦,使點為弦的中點,則弦所在直線的方程為A. B.C. D.3.已知等差數列前項和為,若,則的公差為()A.4 B.3C.2 D.14.焦點坐標為的拋物線的標準方程是()A. B.C. D.5.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.6.如圖所示,在三棱錐中,E,F分別是AB,BC的中點,則等于()A. B.C. D.7.過雙曲線的右焦點F作一條漸近線的垂線,垂足為M,且FM的中點A在雙曲線上,則雙曲線離心率e等于()A. B.C. D.8.若方程表示雙曲線,則實數m的取值范圍是()A. B.C. D.9.即空氣質量指數,越小,表明空氣質量越好,當不大于100時稱空氣質量為“優良”.如圖是某市3月1日到12日的統計數據.則下列敘述正確的是A.這天的的中位數是B.天中超過天空氣質量為“優良”C.從3月4日到9日,空氣質量越來越好D.這天的的平均值為10.直線分別交坐標軸于A,B兩點,O為坐標原點,三角形OAB的內切圓上有動點P,則的最小值為()A.16 B.18C.20 D.2211.如圖,四棱錐的底面是矩形,設,,,是棱上一點,且,則()A. B.C. D.12.已知兩條異面直線的方向向量分別是,,則這兩條異面直線所成的角滿足()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若數列滿足,,設,類比課本中推導等比數列前項和公式的方法,可求得______________14.如圖,甲站在水庫底面上的點處,乙站在水壩斜面上的點處,已知庫底與水壩斜面所成的二面角為,測得從,到庫底與水壩斜面的交線的距離分別為,,若,則甲,乙兩人相距________________15.已知集合,,將中的所有元素按從大到小的順序排列構成一個數列,則數列的前n項和的最大值為___________.16.已知三棱錐中,平面BCD,,,,則三棱錐的外接球的表面積為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線l經過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0的交點,且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標準方程18.(12分)已知圓心為的圓,滿足下列條件:圓心在軸上,與直線相切,且被軸截得的弦長為,圓的面積小于(1)求圓的標準方程;(2)設過點的直線與圓交于不同的兩點、,以、為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程,如果不存在,請說明理由19.(12分)已知函數(a為常數)(1)討論函數的單調性;(2)不等式在上恒成立,求實數a的取值范圍.20.(12分)已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為(1)求橢圓的方程;(2)設直線與橢圓相交于不同的兩點,已知點的坐標為,若,求直線的方程21.(12分)已知函數f(x)=x﹣lnx(1)求曲線y=f(x)在點(1,f(1))處的切線方程;(2)求函數f(x)的極值.22.(10分)寫出下列命題的逆命題、否命題以及逆否命題:(1)若,則;(2)已知為實數,若,則

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出邊上的高所在的直線的斜率,再利用點斜式方程可得答案.【詳解】因為,所以邊上的高所在的直線的斜率為,所以邊上的高所在的直線方程為,即.故選:B.2、A【解析】由題知為弦AB的中點,可得直線與過圓心和點的直線垂直,可求的斜率,然后用點斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點睛】本題考查直線與圓的位置關系,直線的斜率,直線的點斜式方程,屬于基礎題3、A【解析】由已知,結合等差數列前n項和公式、通項公式列方程組求公差即可.詳解】由題設,,解得.故選:A4、D【解析】依次確定選項中各個拋物線的焦點坐標即可.【詳解】對于A,的焦點坐標為,A錯誤;對于B,的焦點坐標為,B錯誤;對于C,焦點坐標為,C錯誤;對于D,的焦點坐標為,D正確.故選:D.5、A【解析】根據直線方程,求得直線斜率,再根據傾斜角和斜率的關系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當時,為鈍角,當,,當,為銳角;當不存在時,傾斜角為,對A:,顯然傾斜角為鈍角;對B:,傾斜角為銳角;對C:,傾斜角為銳角;對D:不存在,此時傾斜角為直角.故選:A.6、D【解析】根據向量的線性運算公式化簡可得結果.【詳解】因為E,F分別是AB,AC的中點,所以,,所以,故選:D7、A【解析】根據題意可表示出漸近線方程,進而可知的斜率,表示出直線方程,求出的坐標進而求得A點坐標,代入雙曲線方程整理求得和的關系式,進而求得離心率【詳解】:由題意設相應的漸近線:,則根據直線的斜率為,則的方程為,聯立雙曲線漸近線方程求出,則,,則的中點,把中點坐標代入雙曲線方程中,即,整理得,即,求得,即離心率為,故答案為:8、A【解析】方程化為圓錐曲線(橢圓與雙曲線)標準方程的形式,然后由方程表示雙曲線可得不等關系【詳解】解:方程可化為,它表示雙曲線,則,解得.故選:A9、C【解析】這12天的AQI指數值的中位數是,故A不正確;這12天中,空氣質量為“優良”的有95,85,77,67,72,92共6天,故B不正確;;從4日到9日,空氣質量越來越好,,故C正確;這12天的指數值的平均值為110,故D不正確.故選C10、B【解析】由題意,求出內切圓的半徑和圓心坐標,設,則,由表示內切圓上的動點P到定點的距離的平方,從而即可求解最小值.【詳解】解:因為直線分別交坐標軸于A,B兩點,所以設,則,因為,所以三角形OAB的內切圓半徑,內切圓圓心為,所以內切圓的方程為,設,則,因為表示內切圓上的動點P到定點的距離的平方,且在內切圓內,所以,所以,,即的最小值為18,故選:B.11、B【解析】根據空間向量基本定理求解【詳解】由已知故選:B12、D【解析】利用向量夾角余弦公式直接求解【詳解】解:兩條異面直線的方向向量分別是,,這兩條異面直線所成的角滿足:,,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、n【解析】先對兩邊同乘以4,再相加,化簡整理即可得出結果.【詳解】由①得:②所以①②得:,所以,,故答案為【點睛】本題主要考查類比推理的思想,結合錯位相減法思想即可求解,屬于基礎題型.14、【解析】首先構造二面角的平面角,如圖,再分別在和中求解.【詳解】作,且,連結,,,,平面且,四邊形時平行四邊形,,平面,平面,中,,中,.故答案為:15、【解析】由題意設,,根據可得,從而,即可得出答案.【詳解】設,由,得,由,得中的元素滿足,即,可得所以,由,所以所以,要使得數列的前n項和的最大值,即求出數列中所以滿足的項的和即可.即,得,則所以數列的前n項和的最大值為故答案為:147216、【解析】由題意可知三棱錐的外接球即為三棱柱的外接球,進而求出三棱柱的外接球的半徑即可得出結果.【詳解】因為,,所以,故,又因為平面BCD,因此三棱錐的外接球即為三棱柱的外接球,如圖:取的中點,則為外接圓的圓心,取的中點,則為外接圓的圓心,則的中點即為外接球的球心,因此,,因此,所以三棱錐的外接球的表面積為,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先求得直線和直線的交點坐標,再用點斜式求得直線的方程.(2)設圓的標準方程為,根據已知條件列方程組,求得,由此求得圓的標準方程.【小問1詳解】.直線的斜率為,所以直線的斜率為,所以直線的方程為.【小問2詳解】設圓的標準方程為,則,所以圓的標準方程為.18、(1);(2)不存在,理由見解析.【解析】(1)設圓心,設圓的半徑為,可得出,根據已知條件可得出關于實數的方程,求出的值,可得出的值,進而可得出圓的標準方程;(2)分析可知直線的斜率存在,可設直線的方程為,設點、,將直線的方程與圓的方程聯立,由可求得的取值范圍,列出韋達定理,分析可得,可求得點的坐標,由已知可得出,求出的值,檢驗即可得出結論.【小問1詳解】解:設圓心,設圓的半徑為,則,由題意可得,由勾股定理可得,則,由題意可得,解得,則,因此,圓的標準方程為.【小問2詳解】解:若直線的斜率不存在,此時直線與軸重合,則、、三點共線,不合乎題意.所以,直線的斜率存在,可設直線的方程為,設點、,聯立,可得,,解得或,由韋達定理可得,,則,因為四邊形為平行四邊形,則,因為,則,則,解得,因為或,因此,不存直線,使得直線與恰好平行.19、(1)當時,在定義域上單調遞增;當時,在上單調遞增,在上單調遞減;(2).【解析】(1)求出的導數,通過討論的范圍,求出函數的單調區間即得解;(2)問題轉化為,,,令,求出的最大值,從而求出的范圍即得解【詳解】解:(1)函數的定義域為,,①當時,,,,在定義域上單調遞增②當時,若,則,在上單調遞增;若,則,在上單調遞減綜上所述,當時,在定義域上單調遞增;當時,在上單調遞增,在上單調遞減(2)當時,,不等式在,上恒成立,,,,令,,,,在,上單調遞增,(1),,的范圍為,20、(1)(2)【解析】(1)由離心率公式以及橢圓的性質列出方程組得出橢圓的方程;(2)聯立直線和橢圓方程,利用韋達定理得出點坐標,最后由距離公式得出直線的方程【小問1詳解】由題意可得,得,,橢圓;【小問2詳解】設,,直線為由,得顯然,由韋達定理有:,則;所以,且,若,解得,所以21、(1)(2)極小值為,無極大值【解析】(1)求出函數的導函數,再根據導數的幾何意義即可求出切線方程;(2)根據導數的符號求出函數的單調區間,再根據極值的定義即可得出答案.【小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論