2023-2024學年安徽省安慶第一中學數(shù)學高二上期末調(diào)研模擬試題含解析_第1頁
2023-2024學年安徽省安慶第一中學數(shù)學高二上期末調(diào)研模擬試題含解析_第2頁
2023-2024學年安徽省安慶第一中學數(shù)學高二上期末調(diào)研模擬試題含解析_第3頁
2023-2024學年安徽省安慶第一中學數(shù)學高二上期末調(diào)研模擬試題含解析_第4頁
2023-2024學年安徽省安慶第一中學數(shù)學高二上期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年安徽省安慶第一中學數(shù)學高二上期末調(diào)研模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點是橢圓上的任意一點,過點作圓:的切線,設(shè)其中一個切點為,則的取值范圍為()A. B.C. D.2.已知是拋物線的焦點,是拋物線的準線,點,連接交拋物線于點,,則的面積為()A.4 B.9C. D.3.已知直線,橢圓.若直線l與橢圓C交于A,B兩點,則線段AB的中點的坐標為()A. B.C. D.4.命題:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>05.已知橢圓C1:+y2=1(m>1)與雙曲線C2:–y2=1(n>0)的焦點重合,e1,e2分別為C1,C2的離心率,則A.m>n且e1e2>1 B.m>n且e1e2<1C.m<n且e1e2>1 D.m<n且e1e2<16.已知圓:,點,則點到圓上點的最小距離為()A.1 B.2C. D.7.已知數(shù)列{}滿足,則()A. B.C. D.8.在平面直角坐標系中,雙曲線的右焦點為,過雙曲線上一點作軸的垂線足為,若,則該雙曲線的離心率為()A. B.C. D.9.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.即不充分也不必要條件10.若直線a,b是異面直線,點O是空間中不在直線a,b上的任意一點,則()A.不存在過點O且與直線a,b都相交的直線B.過點O一定可以作一條直線與直線a,b都相交C.過點O可以作無數(shù)多條直線與直線a,b都相交D.過點O至多可以作一條直線與直線a,b都相交11.設(shè)實數(shù)x,y滿足約束條件則的最小值()A.5 B.C. D.812.已知函數(shù)(是的導(dǎo)函數(shù)),則()A.21 B.20C.16 D.11二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線方程為______14.若直線的方向向量為,平面的一個法向量為,則直線與平面所成角的正弦值為______.15.已知銳角的內(nèi)角,,的對邊分別為,,,且.若,則外接圓面積的最小值為______16.若直線與直線平行,則實數(shù)m的值為____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,,數(shù)列前項和為.(1)求數(shù)列,的通項公式;(2)表示不超過的最大整數(shù),如,設(shè)的前項和為,令,求證:.18.(12分)已知滿足,.(1)求證:是等差數(shù)列,求的通項公式;(2)若,的前項和是,求證:.19.(12分)已知空間三點.(1)求以為鄰邊平行四邊形的周長和面積;(2)若,且分別與垂直,求向量的坐標.20.(12分)已知等差數(shù)列和正項等比數(shù)列滿足(1)求的通項公式;(2)求數(shù)列的前n項和21.(12分)已知直線與雙曲線相交于、兩點.(1)當時,求;(2)是否存在實數(shù),使以為直徑的圓經(jīng)過坐標原點?若存在,求出的值;若不存在,說明理由.22.(10分)如圖,在四棱錐中,平面底面ABCD,,,,,(1)證明:是直角三角形;(2)求平面PCD與平面PAB的夾角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè),得到,利用橢圓的范圍求解.【詳解】解:設(shè),則,,,因為,所以,即,故選:B2、D【解析】根據(jù)題意求得拋物線的方程為和焦點為,由,得到為的中點,得到,代入拋物線方程,求得,進而求得的面積.【詳解】由直線是拋物線的準線,可得,即,所以拋物線的方程為,其焦點為,因為,可得可得三點共線,且為的中點,又因為,,所以,將點代入拋物線,可得,所以的面積為.故選:D.3、B【解析】聯(lián)立直線方程與橢圓方程,消y得到關(guān)于x的一元二次方程,根據(jù)韋達定理可得,進而得出中點的橫坐標,代入直線方程求出中點的縱坐標即可.【詳解】由題意知,,消去y,得,則,,所以A、B兩點中點的橫坐標為:,所以中點的縱坐標為:,即線段AB的中點的坐標為.故選:B4、B【解析】全稱命題的否定是特稱命題,把任意改為存在,把結(jié)論否定.【詳解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故選:B5、A【解析】詳解】試題分析:由題意知,即,由于m>1,n>0,可得m>n,又=,故.故選A【考點】橢圓的簡單幾何性質(zhì),雙曲線的簡單幾何性質(zhì)【易錯點睛】計算橢圓的焦點時,要注意;計算雙曲線的焦點時,要注意.否則很容易出現(xiàn)錯誤6、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點到圓上點的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點到圓上點的最小距離為.故選:C.7、B【解析】先將通項公式化簡然后用裂項相消法求解即可.【詳解】因為,.故選:B8、A【解析】根據(jù)條件可知四邊形為正方形,從而根據(jù)邊長相等,列式求雙曲線的離心率.【詳解】不妨設(shè)在第一象限,則,根據(jù)題意,四邊形為正方形,于是,即,化簡得,解得(負值舍去).故選:A.9、D【解析】根據(jù)充分條件、必要條件的判定方法,結(jié)合不等式的性質(zhì),即可求解.【詳解】由,可得,即,當時,,但的符號不確定,所以充分性不成立;反之當時,也不一定成立,所以必要性不成立,所以是的即不充分也不必要條件.故選:D.10、D【解析】設(shè)直線與點確定平面,由題意可得直線與平面相交或平行.分兩種情形,畫圖說明即可.【詳解】點是空間中不在直線,上的任意一點,設(shè)直線與點確定平面,由題意可得,故直線與平面相交或平行.(1)若直線與平面相交(如圖1),記,①若,則不存在過點且與直線,都相交的直線;②若與不平行,則直線即為過點且與直線,都相交的直線.(2)若直線與平面平行(如圖2),則不存在過點且與直線,都相交的直線.綜上所述,過點至多有一條直線與直線,都相交.故選:D.11、B【解析】做出,滿足約束條件的可行域,結(jié)合圖形可得答案.【詳解】做出,滿足約束條件可行域如圖,化為,平移直線,當直線經(jīng)過點時有最小值,由得,所以的最小值為.故選:B.12、B【解析】根據(jù)已知求出,即得解.【詳解】解:由題得,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求得的導(dǎo)數(shù),可得切線的斜率和切點,由斜截式方程可得切線方程【詳解】解:的導(dǎo)數(shù)為,可得曲線在處的切線斜率為,切點為,即有切線方程為故答案為【點睛】本題考查導(dǎo)數(shù)的運用:求切線方程,考查導(dǎo)數(shù)的幾何意義,直線方程的運用,考查方程思想,屬于基礎(chǔ)題14、【解析】根據(jù)空間向量夾角公式進行求解即可.【詳解】設(shè)與的夾角為,直線與平面所成角為,所以,故答案為:15、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范圍,再利用正弦定理求出外接圓的半徑,即可求出外接圓的面積;【詳解】解:因為,所以,解得或(舍去).又為銳角三角形,所以.因為,當且僅當時等號成立,所以.外接圓的半徑,故外接圓面積的最小值為故答案為:16、【解析】利用兩條直線平行的充要條件,列式求解即可【詳解】解:因為直線與直線平行,所以,解得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)證明見解析【解析】(1)利用累加法求通項公式,利用通項公式與前n項和公式的關(guān)系可求的通項公式;(2)求出并判斷其范圍,求出,利用裂項相消法求的前n項和即可證明.【小問1詳解】由題可知,當n≥2時,=當n=1時,也符合上式,∴;當時,,當n=1時,也符合上式,∴;【小問2詳解】由(1)知,∴,∵,;∵,,,,,∴設(shè)為數(shù)列的前n項和,則.18、(1)證明見解析,(2)證明見解析【解析】(1)在等式兩邊同時除以,結(jié)合等差數(shù)列的定義可證得數(shù)列為等差數(shù)列,確定該數(shù)列的首項和公差,可求得的表達式;(2)求得,利用裂項相消法求得,即可證得原不等式成立.【小問1詳解】解:在等式兩邊同時除以可得且,所以,數(shù)列是以為首項,以為公差的等差數(shù)列,則,因此,.【小問2詳解】證明:,所以,.故原不等式得證.19、(1)周長為,面積為7.(2)或.【解析】(1)根據(jù)點,求出向量,利用向量的摸公式即可求出的距離,可以求出周長,再利用向量的夾角公式求出夾角的余弦值,根據(jù)平方關(guān)系得到正弦值,再利用即可求解;(2)首先設(shè)出,根據(jù)題意可得出的方程組,解出滿足條件所有的值即可求解.【小問1詳解】由題中條件可知,,,,.所以以為鄰邊的平行四邊形的周長為.因為,因為,所以.所以.故以以為鄰邊的平行四邊形的面積為:.【小問2詳解】設(shè),則,,因為,且分別與垂直,得,解得或所以向量的坐標為或.20、(1);(2)【解析】(1)根據(jù)條件列公差與公比方程組,解得結(jié)果,代入等差數(shù)列通項公式即可;(2)根據(jù)等比數(shù)列求和公式直接求解.【詳解】(1)設(shè)等差數(shù)列公差為,正項等比數(shù)列公比為,因為,所以因此;(2)數(shù)列的前n項和【點睛】本題考查等差數(shù)列以及等比數(shù)列通項公式、等比數(shù)列求和公式,考查基本分析求解能力,屬基礎(chǔ)題.21、(1);(2)不存在,理由見解析.【解析】(1)當時,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,利用弦長公式可求得;(2)假設(shè)存在實數(shù),使以為直徑的圓經(jīng)過坐標原點,設(shè)、,將直線與雙曲線的方程聯(lián)立,列出韋達定理,由已知可得出,利用平面向量數(shù)量積的坐標運算結(jié)合韋達定理可得出,即可得出結(jié)論.【小問1詳解】解:設(shè)點、,當時,聯(lián)立,可得,,由韋達定理可得,,所以,.【小問2詳解】解:假設(shè)存在實數(shù),使以為直徑的圓經(jīng)過坐標原點,設(shè)、,聯(lián)立得,由題意可得,解得且,由韋達定理可知,因為以為直徑的圓經(jīng)過坐標原點,則,所以,,整理可得,該方程無實解,故不存在.22、(1)證明見解析(2)【解析】(1)連接BD,在四邊形ABCD中求得,在中,取得,得到,由線面垂直的性質(zhì)證得平面,得到,再由線面垂直的判定定理,證得平面PBD,進而得到,即可證得是直角三角形(2)以為原點,以所在直線為x軸,過點且與平行直線為y軸,所在直線為z軸,建立的空間直角坐標系,分別求得平面和平面的法向量,利用向量的夾角公式,即可求解.【小問1詳解】證明:如圖所示,連接BD,因為四邊形中,可得,,,所以,,則在中,由余弦定理可得,所以,所以因為平面底面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論