2023-2024學年北京市海淀清華附中數學高二上期末學業質量監測模擬試題含解析_第1頁
2023-2024學年北京市海淀清華附中數學高二上期末學業質量監測模擬試題含解析_第2頁
2023-2024學年北京市海淀清華附中數學高二上期末學業質量監測模擬試題含解析_第3頁
2023-2024學年北京市海淀清華附中數學高二上期末學業質量監測模擬試題含解析_第4頁
2023-2024學年北京市海淀清華附中數學高二上期末學業質量監測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年北京市海淀清華附中數學高二上期末學業質量監測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.阿波羅尼斯約公元前年證明過這樣一個命題:平面內到兩定點距離之比為常數且的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內兩定點A,B間的距離為2,動點P與A,B距離之比滿足:,當P、A、B三點不共線時,面積的最大值是()A. B.2C. D.2.在數列中,,,則()A.985 B.1035C.2020 D.20703.已知命題:,命題:則是的()條件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要4.若直線的傾斜角為120°,則直線的斜率為()A. B.C. D.5.拋物線的焦點到雙曲線的漸近線的距離是()A. B.C.1 D.6.若數列滿足,則數列的通項公式為()A. B.C. D.7.記為等差數列的前n項和,有下列四個等式,甲:;乙:;丙:;丁:.如果只有一個等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁8.在的展開式中,只有第4項的二項式系數最大,則()A.5 B.6C.7 D.89.已知向量=(3,0,1),=(﹣2,4,0),則3+2等于()A.(5,8,3) B.(5,﹣6,4)C.(8,16,4) D.(16,0,4)10.設,,則與的等比中項為()A. B.C. D.11.如圖,雙曲線,是圓的一條直徑,若雙曲線過,兩點,且離心率為,則直線的方程為()A. B.C. D.12.圓的圓心坐標與半徑分別是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設是橢圓上一點,分別是橢圓的左、右焦點,若,則的大小_____.14.如圖,在三棱錐P–ABC的平面展開圖中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,則cos∠FCB=______________.15.必然事件的概率是________.16.與直線和直線的距離相等的直線方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知四棱錐的底面是矩形,底面,且,設E、F、G分別為PC、BC、CD的中點,H為EG的中點,如圖.(1)求證:平面;(2)求直線FH與平面所成角的大小.18.(12分)已知函數.(1)討論函數的單調性;(2)若函數有兩個不同的零點,求實數的取值范圍.19.(12分)已知函數.(1)當時,討論的單調性;(2)當時,證明:.20.(12分)已知拋物線的焦點為F,點在C上(1)求p的值及F的坐標;(2)過F且斜率為的直線l與C交于A,B兩點(A在第一象限),求21.(12分)某公園有一形狀可抽象為圓柱的標志性景觀建筑物,該建筑物底面直徑為8米,在其南面有一條東西走向的觀景直道,建筑物的東西兩側有與觀景直道平行的兩段輔道,觀景直道與輔道距離10米.在建筑物底面中心O的東北方向米的點A處,有一全景攝像頭,其安裝高度低于建筑物的高度(1)在西輔道上距離建筑物1米處的游客,是否在該攝像頭的監控范圍內?(2)求觀景直道不在該攝像頭的監控范圍內的長度22.(10分)已知等差數列的前n項和為,若公差,且,,成等比數列.(1)求的通項公式;(2)求數列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據給定條件建立平面直角坐標系,求出點P的軌跡方程,探求點P與直線AB的最大距離即可計算作答.【詳解】依題意,以線段AB的中點為原點,直線AB為x軸建立平面直角坐標系,如圖,則,,設,因,則,化簡整理得:,因此,點P的軌跡是以點為圓心,為半徑的圓,點P不在x軸上時,與點A,B可構成三角形,當點P到直線(軸)的距離最大時,的面積最大,顯然,點P到軸的最大距離為,此時,,所以面積的最大值是故選:C2、A【解析】根據累加法得,,進而得.【詳解】解:因為所以,當時,,,……,,所以,將以上式子相加得,所以,,.當時,,滿足;所以,.所以.故選:A3、B【解析】利用充分條件和必要條件的定義判斷.【詳解】解:若,則或,即或,所以是的必要不充分條件故選:B4、B【解析】求得傾斜角的正切值即得【詳解】k=tan120°=.故選:B5、B【解析】先確定拋物線的焦點坐標,和雙曲線的漸近線方程,再由點到直線的距離公式即可求出結果.【詳解】因為拋物線的焦點坐標為,雙曲線的漸近線方程為,由點到直線的距離公式可得.故選:B6、D【解析】由,分兩步,當求出,當時得到,兩式作差即可求出數列的通項公式;【詳解】解:因為①,當時,,當時②,①②得,所以,當時也成立,所以;故選:D7、D【解析】分別假設甲、乙、丙、丁不成立,驗證得到答案【詳解】設數列的公差為,若甲不成立,則,由①,③可得,此時與②矛盾;A錯,若乙不成立,則,由①,③可得,此時;與②矛盾;B錯,若丙不成立,則,由①,③可得,此時;與②矛盾;C錯,若丁不成立,則,由①,③可得,此時;,D對,故選:D.8、B【解析】當n為偶數時,展開式中第項二項式系數最大,當n為奇數時,展開式中第和項二項式系數最大.【詳解】因為只有一項二項式系數最大,所以n為偶數,故,得.故選:B9、A【解析】直接根據空間向量的線性運算,即可得到答案;【詳解】,故選:A10、C【解析】利用等比中項的定義可求得結果.【詳解】由題意可知,與的等比中項為.故選:C.11、D【解析】由離心率求得,設出兩點坐標代入雙曲線方程相減求得直線斜率與的關系得結論【詳解】由題意,則,即,由圓方程知,設,,則,,又,兩式相減得,所以,直線方程為,即故選:D12、C【解析】將圓的一般方程化為標準方程,即可得答案.【詳解】由題可知,圓的標準方程為,所以圓心為,半徑為3,故選.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,,利用橢圓的定義、結合余弦定理、已知條件,可得,解得,從而可得結果【詳解】橢圓,可得,設,,可得,化簡可得:,,故答案為【點睛】本題主要考查橢圓的定義以及余弦定理的應用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數有關的問題時,還需要記住等特殊角的三角函數值,以便在解題中直接應用.14、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理計算出、,可得出,然后在中利用余弦定理可求得的值.【詳解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案為:.【點睛】本題考查利用余弦定理解三角形,考查計算能力,屬于中等題.15、1【解析】直接由必然事件的定義求解【詳解】因為必然事件是一定要發生的,所以必然事件的概率是1,故答案為:116、【解析】設直線方程為,根據兩平行直線之間距離公式即可求解.【詳解】設該直線為:,則由兩平行直線之間距離公式得:,故該直線為:;故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接CH,延長交PD于點K,連接BK,根據E、F、G分別為PC、BC、CD的中點,易得,再利用線面平行的判定定理證明.(2)建立空間直角坐標,求得的坐標,平面PBC一個法向量,代入公式求解.【詳解】(1)如圖所示:連接CH,延長交PD于點K,連接BK,因為設E、F、G分別為PC、BC、CD的中點,所以H為CK的中點,所以,又平面平面,所以平面;(2)建立如圖所示直角坐標系則,所以,設平面PBC一個法向量為:,則,有,令,,設直線FH與平面所成角為,所以,因為,所以.【點睛】本題主要考查線面平行的判定定理,線面角的向量求法,還考查了轉化化歸的思想和邏輯推理,運算求解的能力,屬于中檔題.18、(1)答案見解析(2)【解析】(1)求函數的定義域及導函數,根據導數與函數的單調性關系判斷函數的單調性;(2)結合已知條件,根據函數的單調性,極值結合零點存在性定理列不等式求實數的取值范圍.【小問1詳解】的定義域為,當時,恒成立,上單調遞增,當時,在遞減,在遞增【小問2詳解】當時,恒成立,上單調遞增,所以至多存一個零點,不符題意,故舍去.當時,在遞減,在遞增;所以有極小值為構造函數,恒成立,所以在單調遞減,注意到①當時,,則函數至多只有一個零點,不符題意,舍去.②當時,函數圖象連續不間斷,的極小值為,又函數在單調遞減,所以在上存在唯一一個零點;,令,構造函數,恒成立.在單調遞增,所以,即,所以函數在單調遞增,所以在上存在唯一一個零點;當時,函數怡有兩個零點,即在上各有一個零點.綜上,函數有兩個不同的零點,實數的取值范圍為.【點睛】函數零點的求解與判斷方法:(1)直接求零點:令f(x)=0,如果能求出解,則有幾個解就有幾個零點(2)零點存在性定理:利用定理不僅要函數在區間[a,b]上是連續不斷的曲線,且f(a)·f(b)<0,還必須結合函數的圖象與性質(如單調性、奇偶性)才能確定函數有多少個零點(3)利用圖象交點的個數:將函數變形為兩個函數的差,畫兩個函數的圖象,看其交點的橫坐標有幾個不同的值,就有幾個不同的零點.19、(1)在上單調遞減,在上單調遞增(2)證明見解析【解析】(1)當時,利用求得的單調區間.(2)將問題轉化為證明,利用導數求得的最小值大于零,從而證得不等式成立.【小問1詳解】當時,,且,又與均在上單調遞增,所以在上單調遞增.當時,單調遞減;當時,單調遞增綜上,在上單調遞減,在上單調遞增.【小問2詳解】因為,所以,要證,只需證當時,即可.,易知在上單調遞增,又,所以,且,即,當時,單調遞減;當時,單調遞增,,所以.【點睛】在證明不等式的過程中,直接證明困難時,可考慮證明和兩個不等式成立,從而證得成立.20、(1),(2)4【解析】(1)將M坐標代入方程即可;(2)聯立直線l與拋物線方程得到A、B的橫坐標,再利用焦半徑公式求出即可.【小問1詳解】將代入,得,解得,所以【小問2詳解】由(1)得拋物線方程為,直線l的方程為,聯立消y得,解得或,因為A在第一象限,所以,所以,,所以21、(1)不在(2)17.5米【解析】(1)以O為原點,正東方向為x軸正方向建立如圖所示的直角坐標系,求出直線AB方程,判斷直線AB與圓O的位置關系即可;(2)攝像頭監控不會被建筑物遮擋,只需求出過點A的直線l與圓O相切時的直線方程即可.【小問1詳解】以O為原點,正東方向為x軸正方向建立如圖所示的直角坐標系則,觀景直道所在直線的方程為依題意得:游客所在點為則直線AB的方程為,化簡得,所以圓心O到直線AB的距離,故直線AB與圓O相交,所以游客不在該攝像頭監控范圍內.【小問2詳解】由圖易知:過點A的直線l與圓O相切或相離時,攝像頭監控不會被建筑物遮擋,所以設直線l過A且恰與圓O相切,①若直線l垂直于x軸,則l不可能與圓O相切;②若直線l不垂直于x軸,設,整理得所以圓心O到直線l的距離為,解得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論