




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列計算正確的是()A.2x+3x=5x B.2x?3x=6x C.(x3)2=5 D.x3﹣x2=x2.在平面直角坐標系中,已知點A(﹣4,2),B(﹣6,﹣4),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應點A′的坐標是()A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)3.如圖,DE是線段AB的中垂線,,,,則點A到BC的距離是A.4 B. C.5 D.64.若一元二次方程x2﹣2x+m=0有兩個不相同的實數根,則實數m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<15.計算結果是()A.0 B.1 C.﹣1 D.x6.用配方法解方程時,可將方程變形為()A. B. C. D.7.下列各數是不等式組的解是()A.0 B. C.2 D.38.有下列四個命題:①相等的角是對頂角;②兩條直線被第三條直線所截,同位角相等;③同一種正五邊形一定能進行平面鑲嵌;④垂直于同一條直線的兩條直線互相垂直.其中假命題的個數有()A.1個B.2個C.3個D.4個9.在平面直角坐標系中,點P(m,2m-2),則點P不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如圖,⊙O是△ABC的外接圓,∠B=60°,⊙O的半徑為4,則AC的長等于()A.4 B.6 C.2 D.811.如圖,△ABC繞點A順時針旋轉45°得到△AB′C′,若∠BAC=90°,AB=AC=,則圖中陰影部分的面積等于()A.2﹣ B.1 C. D.﹣l12.下列說法中不正確的是()A.全等三角形的周長相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形二、填空題:(本大題共6個小題,每小題4分,共24分.)13.有五張背面完全相同的卡片,其正面分別畫有等腰三角形、平行四邊形、矩形、正方形、菱形,將這五張卡片背面朝上洗勻,從中隨機抽取一張,卡片上的圖形是中心對稱圖形的概率是_____.14.如圖,等邊△ABC的邊長為1cm,D、E分別是AB、AC邊上的點,將△ADE沿直線DE折疊,點A落在點處,且點在△ABC的外部,則陰影部分圖形的周長為_____cm.15.如圖,已知,點為邊中點,點在線段上運動,點在線段上運動,連接,則周長的最小值為______.16.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=4,點D為AB的中點,以點D為圓心作圓,半圓恰好經過三角形的直角頂點C,以點D為頂點,作90°的∠EDF,與半圓交于點E,F,則圖中陰影部分的面積是____.17.一個圓錐的母線長為5cm,底面半徑為1cm,那么這個圓錐的側面積為_____cm1.18.如圖,設△ABC的兩邊AC與BC之和為a,M是AB的中點,MC=MA=5,則a的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:,請你從﹣1≤x<3的范圍內選取一個適當的整數作為x的值.20.(6分)如圖,過點A(2,0)的兩條直線,分別交y軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.求點B的坐標;若△ABC的面積為4,求的解析式.21.(6分)如圖,在方格紙上建立平面直角坐標系,每個小正方形的邊長為1.(1)在圖1中畫出△AOB關于x軸對稱的△A1OB1,并寫出點A1,B1的坐標;(2)在圖2中畫出將△AOB繞點O順時針旋轉90°的△A2OB2,并求出線段OB掃過的面積.22.(8分)下表給出A、B、C三種上寬帶網的收費方式:收費方式月使用費/元包時上網時間/h超時費/(元/min)A30250.05B50500.05C120不限時設上網時間為t小時.(I)根據題意,填寫下表:月費/元上網時間/h超時費/(元)總費用/(元)方式A3040方式B50100(II)設選擇方式A方案的費用為y1元,選擇方式B方案的費用為y2元,分別寫出y1、y2與t的數量關系式;(III)當75<t<100時,你認為選用A、B、C哪種計費方式省錢(直接寫出結果即可)?23.(8分)如圖,圖①是某電腦液晶顯示器的側面圖,顯示屏AO可以繞點O旋轉一定的角度.研究表明:顯示屏頂端A與底座B的連線AB與水平線BC垂直時(如圖②),人觀看屏幕最舒適.此時測得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的長度.(結果精確到0.1cm)24.(10分)如圖1,點為正的邊上一點(不與點重合),點分別在邊上,且.(1)求證:;(2)設,的面積為,的面積為,求(用含的式子表示);(3)如圖2,若點為邊的中點,求證:.圖1圖225.(10分)(1)計算:|﹣3|+(π﹣2018)0﹣2sin30°+()﹣1.(2)先化簡,再求值:(x﹣1)÷(﹣1),其中x為方程x2+3x+2=0的根.26.(12分)A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發.設甲的騎行時間為x(h)(0≤x≤2)(1)根據題意,填寫下表:時間x(h)與A地的距離0.51.8_____甲與A地的距離(km)520乙與A地的距離(km)012(2)設甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關于x的函數解析式;(3)設甲,乙兩人之間的距離為y,當y=12時,求x的值.27.(12分)俄羅斯世界杯足球賽期間,某商店銷售一批足球紀念冊,每本進價40元,規定銷售單價不低于44元,且獲利不高于30%.試銷售期間發現,當銷售單價定為44元時,每天可售出300本,銷售單價每上漲1元,每天銷售量減少10本,現商店決定提價銷售.設每天銷售量為y本,銷售單價為x元.請直接寫出y與x之間的函數關系式和自變量x的取值范圍;當每本足球紀念冊銷售單價是多少元時,商店每天獲利2400元?將足球紀念冊銷售單價定為多少元時,商店每天銷售紀念冊獲得的利潤w元最大?最大利潤是多少元?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
依據合并同類項法則、單項式乘單項式法則、積的乘方法則進行判斷即可.【詳解】A、2x+3x=5x,故A正確;B、2x?3x=6x2,故B錯誤;C、(x3)2=x6,故C錯誤;D、x3與x2不是同類項,不能合并,故D錯誤.故選A.【點睛】本題主要考查的是整式的運算,熟練掌握相關法則是解題的關鍵.2、D【解析】
根據在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k,即可求得答案.【詳解】∵點A(-4,2),B(-6,-4),以原點O為位似中心,相似比為,把△ABO縮小,∴點A的對應點A′的坐標是:(-2,1)或(2,-1).故選D.【點睛】此題考查了位似圖形與坐標的關系.此題比較簡單,注意在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標比等于±k.3、A【解析】
作于利用直角三角形30度角的性質即可解決問題.【詳解】解:作于H.
垂直平分線段AB,
,
,
,
,
,
,
,,
,
故選A.【點睛】本題考查線段的垂直平分線的性質,等腰三角形的性質,解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.4、D【解析】分析:根據方程的系數結合根的判別式△>0,即可得出關于m的一元一次不等式,解之即可得出實數m的取值范圍.詳解:∵方程有兩個不相同的實數根,∴解得:m<1.故選D.點睛:本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數根”是解題的關鍵.5、C【解析】試題解析:.故選C.考點:分式的加減法.6、D【解析】
配方法一般步驟:將常數項移到等號右側,左右兩邊同時加一次項系數一半的平方,配方即可.【詳解】解:故選D.【點睛】本題考查了配方法解方程的步驟,屬于簡單題,熟悉步驟是解題關鍵.7、D【解析】
求出不等式組的解集,判斷即可.【詳解】,由①得:x>-1,由②得:x>2,則不等式組的解集為x>2,即3是不等式組的解,故選D.【點睛】此題考查了解一元一次不等式組,熟練掌握運算法則是解本題的關鍵.8、D【解析】
根據對頂角的定義,平行線的性質以及正五邊形的內角及鑲嵌的知識,逐一判斷.【詳解】解:①對頂角有位置及大小關系的要求,相等的角不一定是對頂角,故為假命題;②只有當兩條平行直線被第三條直線所截,同位角相等,故為假命題;③正五邊形的內角和為540°,則其內角為108°,而360°并不是108°的整數倍,不能進行平面鑲嵌,故為假命題;④在同一平面內,垂直于同一條直線的兩條直線平行,故為假命題.故選:D.【點睛】本題考查了命題與證明.對頂角,垂線,同位角,鑲嵌的相關概念.關鍵是熟悉這些概念,正確判斷.9、B【解析】
根據坐標平面內點的坐標特征逐項分析即可.【詳解】A.若點P(m,2m-2)在第一象限,則有:m>02m-2>0解之得m>1,∴點P可能在第一象限;B.若點P(m,2m-2)在第二象限,則有:m<02m-2>0解之得不等式組無解,∴點P不可能在第二象限;C.若點P(m,2m-2)在第三象限,則有:m<02m-2<0解之得m<1,∴點P可能在第三象限;D.若點P(m,2m-2)在第四象限,則有:m>02m-2<0解之得0<m<1,∴點P可能在第四象限;故選B.【點睛】本題考查了不等式組的解法,坐標平面內點的坐標特征,第一象限內點的坐標特征為(+,+),第二象限內點的坐標特征為(-,+),第三象限內點的坐標特征為(-,-),第四象限內點的坐標特征為(+,-),x軸上的點縱坐標為0,y軸上的點橫坐標為0.10、A【解析】
解:連接OA,OC,過點O作OD⊥AC于點D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故選A.【點睛】本題考查三角形的外接圓;勾股定理;圓周角定理;垂徑定理.11、D【解析】∵△ABC繞點A順時針旋轉45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴圖中陰影部分的面積等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故選D.【點睛】此題主要考查了旋轉的性質以及等腰直角三角形的性質等知識,得出AD,AF,DC′的長是解題關鍵.12、D【解析】
根據全等三角形的性質可知A,B,C命題均正確,故選項均錯誤;D.錯誤,全等三角也可能是直角三角,故選項正確.故選D.【點睛】本題考查全等三角形的性質,兩三角形全等,其對應邊和對應角都相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:直接利用中心對稱圖形的性質結合概率求法直接得出答案.詳解:∵等腰三角形、平行四邊形、矩形、正方形、菱形中,平行四邊形、矩形、正方形、菱形都是中心對稱圖形,∴從中隨機抽取一張,卡片上的圖形是中心對稱圖形的概率是:.故答案為.點睛:此題主要考查了中心對稱圖形的性質和概率求法,正確把握中心對稱圖形的定義是解題關鍵.14、3【解析】
由折疊前后圖形全等,可將陰影部分圖形的周長轉化為三角形周長.【詳解】∵△A'DE與△ADE關于直線DE對稱,∴AD=A'D,AE=A'E,C陰影=BC+A'D+A'E+BD+EC=BC+AD+AE+BD+EC=BC+AB+AC=3cm.故答案為3.【點睛】由圖形軸對稱可以得到對應的邊相等、角相等.15、【解析】
作梯形ABCD關于AB的軸對稱圖形,將BC'繞點C'逆時針旋轉120°,則有GE'=FE',P與Q是關于AB的對稱點,當點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,F'M為所求長度;過點F'作F'H⊥BC',M是BC中點,則Q是BC'中點,由已知條件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以F'H=,HC'=1,在Rt△MF'H中,即可求得F'M.【詳解】作梯形ABCD關于AB的軸對稱圖形,作F關于AB的對稱點G,P關于AB的對稱點Q,∴PF=GQ,將BC'繞點C'逆時針旋轉120°,Q點關于C'G的對應點為F',∴GF'=GQ,設F'M交AB于點E',∵F關于AB的對稱點為G,∴GE'=FE',
∴當點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,∴F'M為所求長度;
過點F'作F'H⊥BC',
∵M是BC中點,
∴Q是BC'中點,
∵∠B=90°,∠C=60°,BC=2AD=4,
∴C'Q=F'C'=2,∠F'C'H=60°,
∴F'H=,HC'=1,∴MH=7,
在Rt△MF'H中,F'M;
∴△FEP的周長最小值為.
故答案為:.【點睛】本題考查了動點問題的最短距離,涉及的知識點有:勾股定理,含30度角直角三角形的性質,能夠通過軸對稱和旋轉,將三角形的三條邊轉化為線段的長是解題的關鍵.16、π﹣1.【解析】
連接CD,作DM⊥BC,DN⊥AC,證明△DMG≌△DNH,則S四邊形DGCH=S四邊形DMCN,求得扇形FDE的面積,則陰影部分的面積即可求得.【詳解】連接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,點D為AB的中點,∴DC=AB=1,四邊形DMCN是正方形,DM=.則扇形FDE的面積是:=π.∵CA=CB,∠ACB=90°,點D為AB的中點,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵,∴△DMG≌△DNH(AAS),∴S四邊形DGCH=S四邊形DMCN=1.則陰影部分的面積是:π﹣1.故答案為π﹣1.【點睛】本題考查了三角形的全等的判定與扇形的面積的計算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關鍵.17、【解析】分析:根據圓錐的側面展開圖為扇形,先計算出圓錐的底面圓的周長,然后利用扇形的面積公式求解.詳解:∵圓錐的底面半徑為5cm,∴圓錐的底面圓的周長=1π?5=10π,∴圓錐的側面積=?10π?1=10π(cm1).故答案為10π.點睛:本題考查了圓錐的側面積的計算:圓錐的側面展開圖為扇形,扇形的弧長為圓錐的底面周長,扇形的半徑為圓錐的母線長.也考查了扇形的面積公式:S=?l?R,(l為弧長).18、10<a≤10.【解析】
根據題設知三角形ABC是直角三角形,由勾股定理求得AB的長度及由三角形的三邊關系求得a的取值范圍;然后根據題意列出二元二次方程組,通過方程組求得xy的值,再把該值依據根與系數的關系置于一元二次方程z2-az+=0中,最后由根的判別式求得a的取值范圍.【詳解】∵M是AB的中點,MC=MA=5,∴△ABC為直角三角形,AB=10;∴a=AC+BC>AB=10;令AC=x、BC=y.∴,∴xy=,∴x、y是一元二次方程z2-az+=0的兩個實根,∴△=a2-4×≥0,即a≤10.綜上所述,a的取值范圍是10<a≤10.故答案為10<a≤10.【點睛】本題綜合考查了勾股定理、直角三角形斜邊上的中線及根的判別式.此題的綜合性比較強,解題時,還利用了一元二次方程的根與系數的關系、根的判別式的知識點.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、1.【解析】
根據分式的化簡法則:先算括號里的,再算乘除,最后算加減.對不同分母的先通分,按同分母分式加減法計算,且要把復雜的因式分解因式,最后約分,化簡完后再代入求值,但是不能代入-1,0,1,保證分式有意義.【詳解】解:====當x=2時,原式==1.【點睛】本題考查分式的化簡求值及分式成立的條件,掌握運算法則準確計算是本題的解題關鍵.20、(1)(0,3);(2).【解析】
(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出點B的坐標;(2)由=BC?OA,得到BC=4,進而得到C(0,-1).設的解析式為,把A(2,0),C(0,-1)代入即可得到的解析式.【詳解】(1)在Rt△AOB中,∵,∴,∴OB=3,∴點B的坐標是(0,3).(2)∵=BC?OA,∴BC×2=4,∴BC=4,∴C(0,-1).設的解析式為,把A(2,0),C(0,-1)代入得:,∴,∴的解析式為是.考點:一次函數的性質.21、(1)A1(﹣1,﹣2),B1(2,﹣1);(2).【解析】
(1)根據軸對稱性質解答點關于x軸對稱橫坐標不變,縱坐標互為相反數;(2)根據旋轉變換的性質、扇形面積公式計算.【詳解】(1)如圖所示:A1(﹣1,﹣2),B1(2,﹣1);(2)將△AOB繞點O順時針旋轉90°的△A2OB2如圖所示:線段OB掃過的面積為:【點睛】此題主要考查了圖形的旋轉以及位似變換和軸對稱變換等知識,根據題意得出對應點坐標位置是解題關鍵.22、(I)見解析;(II)見解析;(III)見解析.【解析】
(I)根據兩種方式的收費標準分別計算,填表即可;(II)根據表中給出A,B兩種上寬帶網的收費方式,分別寫出y1、y2與t的數量關系式即可;(III)計算出三種方式在此取值范圍的收費情況,然后比較即可得出答案.【詳解】(I)當t=40h時,方式A超時費:0.05×60(40﹣25)=45,總費用:30+45=75,當t=100h時,方式B超時費:0.05×60(100﹣50)=150,總費用:50+150=200,填表如下:月費/元上網時間/h超時費/(元)總費用/(元)方式A30404575方式B50100150200(II)當0≤t≤25時,y1=30,當t>25時,y1=30+0.05×60(t﹣25)=3t﹣45,所以y1=;當0≤t≤50時,y2=50,當t>50時,y2=50+0.05×60(t﹣50)=3t﹣100,所以y2=;(III)當75<t<100時,選用C種計費方式省錢.理由如下:當75<t<100時,y1=3t﹣45,y2=3t﹣100,y3=120,當t=75時,y1=180,y2=125,y3=120,所以當75<t<100時,選用C種計費方式省錢.【點睛】本題考查了一次函數的應用,解答時理解三種上寬帶網的收費標準進而求出函數的解析式是解題的關鍵.23、37【解析】試題分析:過點作交于點.構造直角三角形,在中,計算出,在中,計算出.試題解析:如圖所示:過點作交于點.
在中,
又∵在中,
答:的長度為24、(1)詳見解析;(1)詳見解析;(3)詳見解析.【解析】
(1)根據兩角對應相等的兩個三角形相似即可判斷;
(1)如圖1中,分別過E,F作EG⊥BC于G,FH⊥BC于H,S1=?BD?EG=?BD?EG=?a?BE?sin60°=?a?BE,S1=?CD?FH=?b?CF,可得S1?S1=ab?BE?CF,由(1)得△BDE∽△CFD,,即BE?FC=BD?CD=ab,即可推出S1?S1=a1b1;
(3)想辦法證明△DFE∽△CFD,推出,即DF1=EF?FC;【詳解】(1)證明:如圖1中,
在△BDE中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,
∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC,
∵∠EDF=∠B,
∴∠DEB=∠FDC,
又∠B=∠C,
∴△BDE∽△CFD.
(1)如圖1中,分別過E,F作EG⊥BC于G,FH⊥BC于H,
S1=?BD?EG=?BD?EG=?a?BE?sin60°=?a?BE,S1=?CD?FH=?b?CF,
∴S1?S1=ab?BE?CF
由(1)得△BDE∽△CFD,
∴,即BE?FC=BD?CD=ab,
∴S1?S1=a1b1.(3)由(1)得△BDE∽△CFD,
∴,
又BD=CD,
∴,
又∠EDF=∠C=60°,
∴△DFE∽△CFD,
∴,即DF1=EF?FC.【點睛】本題考查了相似形綜合題、等邊三角形的性質、相似三角形的判定和性質、三角形的面積等知識,解題的關鍵是正確尋找相似三角形的相似的條件.25、(1)6;(2)﹣(x+1),1.【解析】
(1)原式=3+1﹣2×+3=6(2)由題意可知:x2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x﹣1)÷=﹣(x+1)當x=﹣1時,x+1=0,分式無意義,當x=﹣2時,原式=126、(1)18,2,20(2)(3)當y=12時,x的值是1.2或1.6【解析】
(Ⅰ)根據路程、時間、速度三者間的關系通過計算即可求得相應答案;(Ⅱ)根據路程=速度×時間結合甲、乙的速度以及時間范圍即可求得答案;(Ⅲ)根據題意,得,然后分別將y=12代入即可求得答案.【詳解】(Ⅰ)由題意知:甲、乙二人平均速度分別是平均速度為10km/h和40km/h,且比甲晚1.5h出發,當時間x=1.8時,甲離開A的距離是10×1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫療器械臨床試驗質量管理在醫療器械臨床試驗倫理審查中的應用報告
- 2025年農業保險產品創新與服務優化對農業保險行業風險管理的啟示報告
- 工業互聯網平臺數字簽名技術規范與工業網絡安全防護研究報告
- 歷史文化街區在城市更新中的歷史建筑保護與開發報告
- 2025年有色金屬行業資源循環利用產業鏈產業鏈可持續發展報告
- 胸外科肺康復健康教育小講課
- 腦梗死溶栓后護理
- 糖尿病低血糖護理查房
- 北師大版四年級下冊第八單元 B卷語文試卷
- 重點環節護理應急管理制度及預案
- 鉆孔壓水試驗記錄表
- 環保餐具的設計
- 結核菌素(PPD、EC)皮膚試驗報告單
- 電工學(第六版)中職PPT完整全套教學課件
- 產業命題賽道命題解決對策參考模板
- 砼塔施工方案
- 資本運作理論與操作實務課件
- 使用林地審批咨詢服務投標方案
- 電動車分期付款的合同范本
- 凱迪拉克賽威說明書
- 2023年新疆省新疆生產建設兵團四年級數學第二學期期末預測試題含解析
評論
0/150
提交評論