




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第滬教版八年級(jí)上冊(cè)數(shù)學(xué)第一章教案4篇
滬教版八年級(jí)上冊(cè)數(shù)學(xué)第一章教案篇1
一、學(xué)習(xí)目標(biāo):1.經(jīng)歷探索平方差公式的過(guò)程.
2.會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的運(yùn)算.
二、重點(diǎn)難點(diǎn)
重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用
難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式.
三、合作學(xué)習(xí)
你能用簡(jiǎn)便方法計(jì)算下列各題嗎
(1)2023×1999(2)998×1002
導(dǎo)入新課:計(jì)算下列多項(xiàng)式的積.
(1)(x+1)(x-1)(2)(m+2)(m-2)
(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)
結(jié)論:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.
即:(a+b)(a-b)=a2-b2
四、精講精練
例1:運(yùn)用平方差公式計(jì)算:
(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)
例2:計(jì)算:
(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)
隨堂練習(xí)
計(jì)算:
(1)(a+b)(-b+a)(2)(-a-b)(a-b)(3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2)(5)(a+2b+2c)(a+2b-2c)(6)(a-b)(a+b)(a2+b2)
五、小結(jié):(a+b)(a-b)=a2-b2
第三十五學(xué)時(shí):4.2.2.完全平方公式(一)
一、學(xué)習(xí)目標(biāo):1.完全平方公式的推導(dǎo)及其應(yīng)用.
2.完全平方公式的幾何解釋.
二、重點(diǎn)難點(diǎn):
重點(diǎn):完全平方公式的推導(dǎo)過(guò)程、結(jié)構(gòu)特點(diǎn)、幾何解釋,靈活應(yīng)用
難點(diǎn):理解完全平方公式的結(jié)構(gòu)特征并能靈活應(yīng)用公式進(jìn)行計(jì)算
三、合作學(xué)習(xí)
Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境
一位老人非常喜歡孩子.每當(dāng)有孩子到他家做客時(shí),老人都要拿出糖果招待他們.來(lái)一個(gè)孩子,老人就給這個(gè)孩子一塊糖,來(lái)兩個(gè)孩子,老人就給每個(gè)孩子兩塊塘,…
(1)第一天有a個(gè)男孩去了老人家,老人一共給了這些孩子多少塊糖
(2)第二天有b個(gè)女孩去了老人家,老人一共給了這些孩子多少塊糖
(3)第三天這(a+b)個(gè)孩子一起去看老人,老人一共給了這些孩子多少塊糖
(4)這些孩子第三天得到的糖果數(shù)與前兩天他們得到的糖果總數(shù)哪個(gè)多多多少為什么
Ⅱ.導(dǎo)入新課
計(jì)算下列各式,你能發(fā)現(xiàn)什么規(guī)律
(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;
(5)(a+b)2=________;(6)(a-b)2=________.
兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)這兩個(gè)數(shù)的積的二倍的2倍.
(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2
四、精講精練
例1、應(yīng)用完全平方公式計(jì)算:
(1)(4m+n)2(2)(y-)2(3)(-a-b)2(4)(b-a)2
例2、用完全平方公式計(jì)算:
(1)1022(2)992
隨堂練習(xí)
第三十六學(xué)時(shí):14.2.2完全平方公式(二)
一、學(xué)習(xí)目標(biāo):1.添括號(hào)法則.
2.利用添括號(hào)法則靈活應(yīng)用完全平方公式
二、重點(diǎn)難點(diǎn)
重點(diǎn):理解添括號(hào)法則,進(jìn)一步熟悉乘法公式的合理利用
難點(diǎn):在多項(xiàng)式與多項(xiàng)式的乘法中適當(dāng)添括號(hào)達(dá)到應(yīng)用公式的目的.
三、合作學(xué)習(xí)
Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境
請(qǐng)同學(xué)們完成下列運(yùn)算并回憶去括號(hào)法則.
(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)
去括號(hào)法則:
去括號(hào)時(shí),如果括號(hào)前是正號(hào),去掉括號(hào)后,括號(hào)里的每一項(xiàng)都不變號(hào);
如果括號(hào)前是負(fù)號(hào),去掉括號(hào)后,括號(hào)里的各項(xiàng)都要變號(hào)。
1.在等號(hào)右邊的括號(hào)內(nèi)填上適當(dāng)?shù)捻?xiàng):
(1)a+b-c=a+()(2)a-b+c=a-()
(3)a-b-c=a-()(4)a+b+c=a-()
2.判斷下列運(yùn)算是否正確.
(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)
添括號(hào)法則:添上一個(gè)正括號(hào),擴(kuò)到括號(hào)里的不變號(hào),添上一個(gè)負(fù)括號(hào),擴(kuò)到括號(hào)里的要變號(hào)。
五、精講精練
例:運(yùn)用乘法公式計(jì)算
(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2
(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)
隨堂練習(xí):教科書(shū)練習(xí)
五、小結(jié):去括號(hào)法則
六、作業(yè):教科書(shū)習(xí)題
滬教版八年級(jí)上冊(cè)數(shù)學(xué)第一章教案篇2
為了更好的引入“反比例函數(shù)”的概念,并能突出重點(diǎn),我采用了課本上的問(wèn)題情境,同時(shí)調(diào)整了課本上提供的“思考”的問(wèn)題的位置,將它放到函數(shù)概念引出之后,讓學(xué)生體會(huì)在生活中有很多反比例關(guān)系。
情境設(shè)置:
汽車從南京開(kāi)往上海,全程約300km,全程所用的時(shí)間t(h)隨v(km/h)的變化而變化。
(1)你能用含v的代數(shù)式來(lái)表示t嗎
(2)時(shí)間t是速度v的函數(shù)嗎
設(shè)計(jì)意圖:與前面復(fù)習(xí)內(nèi)容相呼應(yīng),讓同學(xué)們能在“做一做”和“議一儀”中感受兩個(gè)量之間的函數(shù)關(guān)系,同時(shí)也能注意到與所學(xué)“一次函數(shù)”,尤其是“正比例函數(shù)”的不同。從而自然地引入“反比例函數(shù)”概念。
為幫助學(xué)生更深刻的認(rèn)識(shí)和掌握反比例函數(shù)概念,我引導(dǎo)學(xué)生將反比例函數(shù)的一般式進(jìn)行變形,并安排了相應(yīng)的例題。
一般式變形:(其中k均不為0)
通過(guò)對(duì)一般式的變形,讓學(xué)生從“形”上掌握“反比例函數(shù)”的概念,在結(jié)合“思考”的幾個(gè)問(wèn)題,讓學(xué)生從“神”神上體驗(yàn)“反比例函數(shù)”。
為加深難度,我又補(bǔ)充了幾個(gè)練習(xí):
1、為何值時(shí),為反比例函數(shù)
2是的反比例函數(shù),是的正比例函數(shù),則與成什么關(guān)系
關(guān)于課堂教學(xué):
由于備課充分,我信心十足,課堂上情緒飽滿,學(xué)生們也受到我的影響,精神飽滿,課堂氣氛相對(duì)活躍。
在復(fù)習(xí)“函數(shù)”這一概念的時(shí)候,很多學(xué)生顯露出難色,顯然不是忘記了就是不知到如何表達(dá)。我舉了兩個(gè)簡(jiǎn)單的實(shí)例,學(xué)生們立即就回憶起函數(shù)的本質(zhì)含義,為學(xué)習(xí)反比例函數(shù)做了很好的鋪墊。一路走來(lái),非常輕松。
對(duì)反比例函數(shù)一般式的變形,是課堂教學(xué)中較成功的一筆,就是因?yàn)檫@一探索過(guò)程,對(duì)于我補(bǔ)充的練習(xí)1這類屬中等難度的題型,班級(jí)中成績(jī)偏下的同學(xué)也能很好的掌握。
而對(duì)于練習(xí)3,對(duì)于初學(xué)反比例函數(shù)的學(xué)生來(lái)說(shuō),有點(diǎn)難度,大部分學(xué)生顯露出感興趣的神情,不少學(xué)生能很好得解答此類題。
經(jīng)驗(yàn)感想:
1、課前認(rèn)真準(zhǔn)備,對(duì)授課效果的影響是不容忽視的。
2、教師的精神狀態(tài)直接影響學(xué)生的精神狀態(tài)。
3、數(shù)學(xué)教學(xué)一定要重概念,抓本質(zhì)。
4、課堂上要注重學(xué)生情感,表情,可適當(dāng)調(diào)整教學(xué)深度。
滬教版八年級(jí)上冊(cè)數(shù)學(xué)第一章教案篇3
一、學(xué)習(xí)目標(biāo):讓學(xué)生了解多項(xiàng)式公因式的意義,初步會(huì)用提公因式法分解因式
二、重點(diǎn)難點(diǎn)
重點(diǎn):能觀察出多項(xiàng)式的公因式,并根據(jù)分配律把公因式提出來(lái)
難點(diǎn):讓學(xué)生識(shí)別多項(xiàng)式的公因式.
三、合作學(xué)習(xí):
公因式與提公因式法分解因式的概念.
三個(gè)矩形的長(zhǎng)分別為a、b、c,寬都是m,則這塊場(chǎng)地的面積為ma+mb+mc,或m(a+b+c)
既ma+mb+mc=m(a+b+c)
由上式可知,把多項(xiàng)式ma+mb+mc寫(xiě)成m與(a+b+c)的乘積的形式,相當(dāng)于把公因式m從各項(xiàng)中提出來(lái),作為多項(xiàng)式ma+mb+mc的一個(gè)因式,把m從多項(xiàng)式ma+mb+mc各項(xiàng)中提出后形成的多項(xiàng)式(a+b+c),作為多項(xiàng)式ma+mb+mc的另一個(gè)因式,這種分解因式的方法叫做提公因式法。
四、精講精練
例1、將下列各式分解因式:
(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3)a(x-3)+2b(x-3)
通過(guò)剛才的練習(xí),下面大家互相交流,總結(jié)出找公因式的一般步驟.
首先找各項(xiàng)系數(shù)的____________________,如8和12的公約數(shù)是4.
其次找各項(xiàng)中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數(shù)取次數(shù)最___________的.
課堂練習(xí)
1.寫(xiě)出下列多項(xiàng)式各項(xiàng)的公因式.
(1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72(2)a2b-5ab
(3)4m3-6m2(4)a2b-5ab+9b
(5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2
五、小結(jié):
總結(jié)出找公因式的一般步驟.:
首先找各項(xiàng)系數(shù)的大公約數(shù),
其次找各項(xiàng)中含有的相同的字母,相同字母的指數(shù)取次數(shù)最小的.
注意:(a-b)2=(b-a)2
六、作業(yè)1、教科書(shū)習(xí)題
2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)2023+(-2)2023
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
滬教版八年級(jí)上冊(cè)數(shù)學(xué)第一章教案篇4
一、學(xué)習(xí)目標(biāo):1.使學(xué)生了解運(yùn)用公式法分解因式的意義;
2.使學(xué)生掌握用平方差公式分解因式
二、重點(diǎn)難點(diǎn)
重點(diǎn):掌握運(yùn)用平方差公式分解因式.
難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式;
學(xué)習(xí)方法:歸納、概括、總結(jié)
三、合作學(xué)習(xí)
創(chuàng)設(shè)問(wèn)題情境,引入新課
在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成幾個(gè)因式乘積的形式.
如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過(guò)程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來(lái)學(xué)習(xí)另外的一種因式分解的方法——公式法.
1.請(qǐng)看乘法公式
(a+b)(a-b)=a2-b2(1)
左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過(guò)來(lái)就是
a2-b2=(a+b)(a-b)(2)
左邊是一個(gè)多項(xiàng)式,右邊是整式的乘積.大家判斷一下,第二個(gè)式子從左邊到右邊是否是因式分解
利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式.
a2-b2=(a+b)(a-b)
2.公式講解
如x2-16
=(x)2-42
=(x+4)(x-4).
9m2-4n2
=(3m)2-(2n)2
=(3m+2n)(3m-2n)
四、精講精練
例1、把下列各式分解因式
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子版勞務(wù)合同協(xié)議書(shū)
- 洗鞋店合作合同協(xié)議書(shū)
- 未轉(zhuǎn)正員工旅游協(xié)議書(shū)
- 拆除鋼筋棚安全協(xié)議書(shū)
- 工程款合同解除協(xié)議書(shū)
- 幼兒園園長(zhǎng)合同協(xié)議書(shū)
- 湖南水利水電局協(xié)議書(shū)
- 貝拉結(jié)婚協(xié)議書(shū)
- 就業(yè)協(xié)議和意向協(xié)議書(shū)
- 男人結(jié)婚協(xié)議書(shū)
- 監(jiān)理檢測(cè)和試驗(yàn)儀器設(shè)備一覽表
- 小型軋鋼機(jī)結(jié)構(gòu)設(shè)計(jì)
- 房屋拆除工程專項(xiàng)施工方案
- 像冠軍一樣教學(xué)讀后感3實(shí)用
- 電力安全生產(chǎn)事故調(diào)查規(guī)程
- GB/T 18781-2023珍珠分級(jí)
- GA/T 544-2021多道心理測(cè)試系統(tǒng)通用技術(shù)規(guī)范
- 腰椎間盤突出癥的針刀治療課件
- 《法理學(xué)》考試筆記與重點(diǎn)
- DB44!T+2419-2023全生曬柑普茶生產(chǎn)技術(shù)規(guī)程
- (52)-皰疹性咽峽炎小兒推拿探秘
評(píng)論
0/150
提交評(píng)論