吉林省通化市梅河口市2023年高三六校第一次聯考數學試卷含解析_第1頁
吉林省通化市梅河口市2023年高三六校第一次聯考數學試卷含解析_第2頁
吉林省通化市梅河口市2023年高三六校第一次聯考數學試卷含解析_第3頁
吉林省通化市梅河口市2023年高三六校第一次聯考數學試卷含解析_第4頁
吉林省通化市梅河口市2023年高三六校第一次聯考數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知下列命題:①“”的否定是“”;②已知為兩個命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號為()A.③④ B.①② C.①③ D.②④2.已知數列為等差數列,為其前項和,,則()A.7 B.14 C.28 D.843.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.4.若、滿足約束條件,則的最大值為()A. B. C. D.5.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.66.據國家統計局發布的數據,2019年11月全國CPI(居民消費價格指數),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權重,根據該圖,下列結論錯誤的是()A.CPI一籃子商品中所占權重最大的是居住B.CPI一籃子商品中吃穿住所占權重超過50%C.豬肉在CPI一籃子商品中所占權重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為0.18%7.若復數滿足,則對應的點位于復平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.9.已知函數(表示不超過x的最大整數),若有且僅有3個零點,則實數a的取值范圍是()A. B. C. D.10.執行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數值的個數為()A.1 B.2 C.3 D.411.如圖所示,網絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.812.復數的共軛復數記作,已知復數對應復平面上的點,復數:滿足.則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.14.已知函數在點處的切線經過原點,函數的最小值為,則________.15.若滿足約束條件,則的最小值是_________,最大值是_________.16.已知雙曲線的一條漸近線為,且經過拋物線的焦點,則雙曲線的標準方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面;(2)求幾何體的體積.18.(12分)設數列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數列{an}(2)設cn=bnan,求數列19.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.20.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點,且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.21.(12分)等差數列的前項和為,已知,.(Ⅰ)求數列的通項公式及前項和為;(Ⅱ)設為數列的前項的和,求證:.22.(10分)(選修4-4:坐標系與參數方程)在平面直角坐標系,已知曲線(為參數),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由命題的否定,復合命題的真假,充分必要條件,四種命題的關系對每個命題進行判斷.【詳解】“”的否定是“”,正確;已知為兩個命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯誤;“若,則且”是假命題,則它的逆否命題為假命題,錯誤.故選:B.【點睛】本題考查命題真假判斷,掌握四種命題的關系,復合命題的真假判斷,充分必要條件等概念是解題基礎.2.D【解析】

利用等差數列的通項公式,可求解得到,利用求和公式和等差中項的性質,即得解【詳解】,解得..故選:D【點睛】本題考查了等差數列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.3.D【解析】

本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質,難度偏難.4.C【解析】

作出不等式組所表示的可行域,平移直線,找出直線在軸上的截距最大時對應的最優解,代入目標函數計算即可.【詳解】作出滿足約束條件的可行域如圖陰影部分(包括邊界)所示.由,得,平移直線,當直線經過點時,該直線在軸上的截距最大,此時取最大值,即.故選:C.【點睛】本題考查簡單的線性規劃問題,考查線性目標函數的最值,一般利用平移直線的方法找到最優解,考查數形結合思想的應用,屬于基礎題.5.A【解析】

由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.6.D【解析】

A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統計圖的識別與應用,還考查了理解辨析的能力,屬于基礎題.7.D【解析】

利用復數模的計算、復數的除法化簡復數,再根據復數的幾何意義,即可得答案;【詳解】,對應的點,對應的點位于復平面的第四象限.故選:D.【點睛】本題考查復數模的計算、復數的除法、復數的幾何意義,考查運算求解能力,屬于基礎題.8.B【解析】

選B.考點:圓心坐標9.A【解析】

根據[x]的定義先作出函數f(x)的圖象,利用函數與方程的關系轉化為f(x)與g(x)=ax有三個不同的交點,利用數形結合進行求解即可.【詳解】當時,,當時,,當時,,當時,,若有且僅有3個零點,則等價為有且僅有3個根,即與有三個不同的交點,作出函數和的圖象如圖,當a=1時,與有無數多個交點,當直線經過點時,即,時,與有兩個交點,當直線經過點時,即時,與有三個交點,要使與有三個不同的交點,則直線處在過和之間,即,故選:A.【點睛】利用函數零點的情況求參數值或取值范圍的方法(1)直接法:直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數的范圍;(2)分離參數法:先將參數分離,轉化成求函數的值域(最值)問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解.10.C【解析】試題分析:根據題意,當時,令,得;當時,令,得,故輸入的實數值的個數為1.考點:程序框圖.11.A【解析】

先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于常考題型.12.A【解析】

根據復數的幾何意義得出復數,進而得出,由得出可計算出,由此可計算出.【詳解】由于復數對應復平面上的點,,則,,,因此,.故選:A.【點睛】本題考查復數模的計算,考查了復數的坐標表示、共軛復數以及復數的除法,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先由題意設向量的坐標,再結合平面向量數量積的運算及不等式可得解.【詳解】由是單位向量.若,,設,則,,又,則,則,則,又,所以,(當或時取等)即的取值范圍是,,故答案為:,.【點睛】本題考查了平面向量數量積的坐標運算,意在考查學生對這些知識的理解掌握水平.14.0【解析】

求出,求出切線點斜式方程,原點坐標代入,求出的值,求,求出單調區間,進而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點,所以,,,.當時,;當時,.故函數的最小值,所以.故答案為:0.【點睛】本題考查導數的應用,涉及到導數的幾何意義、極值最值,屬于中檔題..15.06【解析】

作不等式組對應的平面區域,利用目標函數的幾何意義,即可求出結果.【詳解】作出可行域,如圖中的陰影部分:求的最值,即求直線在軸上的截距最小和最大時,當直線過點時,軸上截距最大,即z取最小值,.當直線過點時,軸上截距最小,即z取最大值,.故答案為:0;6.【點睛】本題主要考查了線性規劃中的最值問題,利用數形結合是解決問題的基本方法,屬于中檔題.16.【解析】

設以直線為漸近線的雙曲線的方程為,再由雙曲線經過拋物線焦點,能求出雙曲線方程.【詳解】解:設以直線為漸近線的雙曲線的方程為,∵雙曲線經過拋物線焦點,∴,∴雙曲線方程為,故答案為:.【點睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質的合理運用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】

(1)由題可知,根據三角形的中位線的性質,得出,根據矩形的性質得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據面面垂直的性質,得出平面,從而得出到平面的距離為,結合棱錐的體積公式,即可求得結果.【詳解】解:(1)∵,分別為,的中點,∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點,,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因為四邊形是矩形,,,,設幾何體的體積為,則,∴,即:.【點睛】本題考查線面平行的判定、面面垂直的性質和棱錐的體積公式,考查邏輯推理和計算能力.18.(1)an=(2)Tn【解析】

(1)利用an與Sn的遞推關系可以an的通項公式;P點代入直線方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點P(bn,bn+1則數列{bn(2)因為cn=b則13兩式相減得:23所以Tn【點睛】用遞推關系an=Sn-19.(1)見解析;(2)【解析】

(Ⅰ)證明:過點作于點,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點是的中點,連結,則∴平面∴∥,∴四邊形是矩形設,得:,又∵,∴,從而,過作于點,則∴是與平面所成角∴,∴與平面所成角的正弦值為考點:面面垂直的性質定理;線面平行的判定定理;線面垂直的性質定理;直線與平面所成的角.點評:本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的常考題型,較難.本題也可以用向量法來做:用向量法解題的關鍵是;首先正確的建立空間直角坐標系,正確求解平面的一個法向量.注意計算要仔細、認真.≌20.(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論