




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,方程有四個不同的根,記最大的根的所有取值為集合,則“函數有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知角的終邊經過點,則A. B.C. D.3.已知(),i為虛數單位,則()A. B.3 C.1 D.54.定義:表示不等式的解集中的整數解之和.若,,,則實數的取值范圍是A. B. C. D.5.已知圓與拋物線的準線相切,則的值為()A.1 B.2 C. D.46.已知集合,則集合真子集的個數為()A.3 B.4 C.7 D.87.已知是第二象限的角,,則()A. B. C. D.8.已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標準方程為()A. B. C. D.9.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數為()A.1 B.2C.3 D.410.已知等差數列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內角為,則的最大值為()A.5 B.11 C.20 D.2511.定義,已知函數,,則函數的最小值為()A. B. C. D.12.設f(x)是定義在R上的偶函數,且在(0,+∞)單調遞減,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數,則的值為______.14.定義在封閉的平面區域內任意兩點的距離的最大值稱為平面區域的“直徑”.已知銳角三角形的三個點,,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構成平面區域,則平面區域的“直徑”的最大值是__________.15.展開式中的系數的和大于8而小于32,則______.16.已知函數,則曲線在點處的切線方程是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數列,其公比,且滿足,和的等差中項是1.(Ⅰ)求數列的通項公式;(Ⅱ)若,是數列的前項和,求使成立的正整數的值.18.(12分)在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為.(1)求曲線的直角坐標方程和曲線的參數方程;(2)設曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.19.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長.20.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.21.(12分)已知正實數滿足.(1)求的最小值.(2)證明:22.(10分)已知點為橢圓上任意一點,直線與圓交于,兩點,點為橢圓的左焦點.(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
作出函數的圖象,得到,把函數有零點轉化為與在(2,4]上有交點,利用導數求出切線斜率,即可求得的取值范圍,再根據充分、必要條件的定義即可判斷.【詳解】作出函數的圖象如圖,由圖可知,,函數有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數有兩個零點”是“”的充分不必要條件,故選A.【點睛】本題主要考查了函數零點的判定,考查數學轉化思想方法與數形結合的解題思想方法,訓練了利用導數研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.2.D【解析】因為角的終邊經過點,所以,則,即.故選D.3.C【解析】
利用復數代數形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.【點睛】本題考查復數代數形式的乘法運算,是基礎題.4.D【解析】
由題意得,表示不等式的解集中整數解之和為6.當時,數形結合(如圖)得的解集中的整數解有無數多個,解集中的整數解之和一定大于6.當時,,數形結合(如圖),由解得.在內有3個整數解,為1,2,3,滿足,所以符合題意.當時,作出函數和的圖象,如圖所示.若,即的整數解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數的取值范圍是.故選D.5.B【解析】
因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請在此輸入詳解!6.C【解析】
解出集合,再由含有個元素的集合,其真子集的個數為個可得答案.【詳解】解:由,得所以集合的真子集個數為個.故選:C【點睛】此題考查利用集合子集個數判斷集合元素個數的應用,含有個元素的集合,其真子集的個數為個,屬于基礎題.7.D【解析】
利用誘導公式和同角三角函數的基本關系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導公式、同角三角函數的基本關系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.8.B【解析】
由拋物線的定義轉化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點M到其焦點F的距離比點M到y軸的距離大,根據拋物線的定義可得,,所以拋物線的標準方程為:y2=2x.故選B.【點睛】本題考查了拋物線的簡單性質的應用,拋物線方程的求法,屬于基礎題.9.D【解析】可以是共4個,選D.10.D【解析】
由公差d=-2可知數列單調遞減,再由余弦定理結合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數列的公差為-2,可知數列單調遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.11.A【解析】
根據分段函數的定義得,,則,再根據基本不等式構造出相應的所需的形式,可求得函數的最小值.【詳解】依題意得,,則,(當且僅當,即時“”成立.此時,,,的最小值為,故選:A.【點睛】本題考查求分段函數的最值,關鍵在于根據分段函數的定義得出,再由基本不等式求得最值,屬于中檔題.12.D【解析】
利用是偶函數化簡,結合在區間上的單調性,比較出三者的大小關系.【詳解】是偶函數,,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數的奇偶性和單調性比較大小,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據題意,由函數的解析式求出的值,進而計算可得答案.【詳解】根據題意,函數,則,則;故答案為:.【點睛】本題考查分段函數的性質、對數運算法則的應用,考查函數與方程思想、轉化與化歸思想,考查運算求解能力.14.【解析】
先找到平面區域內任意兩點的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點E,AC中點F,BC中點G,如圖所示顯然平面區域任意兩點距離最大值為,而,當且僅當時,等號成立.故答案為:.【點睛】本題考查正弦定理在平面幾何中的應用問題,涉及到距離的最值問題,在處理這類問題時,一定要數形結合,本題屬于中檔題.15.4【解析】
由題意可得項的系數與二項式系數是相等的,利用題意,得出不等式組,求得結果.【詳解】觀察式子可知,,故答案為:4.【點睛】該題考查的是有關二項式定理的問題,涉及到的知識點有展開式中項的系數和,屬于基礎題目.16.【解析】
求導,x=0代入求k,點斜式求切線方程即可【詳解】則又故切線方程為y=x+1故答案為y=x+1【點睛】本題考查切線方程,求導法則及運算,考查直線方程,考查計算能力,是基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ).(Ⅱ).【解析】
(Ⅰ)由等差數列中項性質和等比數列的通項公式,解方程可得首項和公比,可得所求通項公式;(Ⅱ),由數列的錯位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數列,其公比,且滿足,和的等差中項是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡可得:,即為解得:【點睛】本題考查等比數列的通項公式和求和公式的運用,考查數列的錯位相減法求和,以及方程思想和運算能力,屬于中檔題.18.(1)曲線的直角坐標方程為,曲線的參數方程為為參數(2)【解析】
(1)將代入,可得,所以曲線的直角坐標方程為.由可得,將,代入上式,可得,整理可得,所以曲線的參數方程為為參數.(2)由題可設,,,所以,,,所以,因為,所以,所以當,即時,l取得最大值為,所以的周長的最大值為.19.(1);(2).【解析】
(1)在三角形中,利用余弦定理列方程,解方程求得的長,進而由三角形的面積公式求得三角形的面積.(2)利用誘導公式求得,進而求得,利用兩角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的長.【詳解】(1)在中,,解得,.(2)在中,,..【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.20.(1)證明見解析(2)【解析】
(1)由底面為菱形,得,再由底面,可得,結合線面垂直的判定可得平面;(2)以點為坐標原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標系,分別求出平面與平面的一個法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點為坐標原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標系.則,,,,.,,,.設平面與平面的一個法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二面角的余弦值為.【點睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓練了利用空間向量求解空間角,屬于中檔題.21.(1);(2)見解析【解析】
(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為,所以因為,所以(當且僅當,即時等號成立),所以(2)證明:因為,所以故(當且僅當時,等號成立)【點睛】本題考查了基本不等式的應用,考查了乘“1”法的技巧,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025關于打印機的租賃合同模板
- 紡織品的可持續性原料開發考核試卷
- 牢記黨的教導 爭做強國少年-2025年“六一”少先隊主題活動
- 2024年煙氣治理項目資金需求報告代可行性研究報告
- 環保設備研發、生產、銷售、運營與市場分析協議
- 直播平臺內容審核與用戶隱私保護補充協議
- 藝人演藝項目投資合作經紀合同
- 房地產開發項目臨時圍擋租賃及施工協調合同
- 2025年中國包裝飲用水行業市場規模調研及投資前景研究分析報告
- 2025年中國辦公用品零售行業市場前景預測及投資價值評估分析報告
- DL∕T 5551-2018 架空輸電線路荷載規范
- 江蘇省常州市重點中學2025屆高考歷史三模試卷含解析
- 小學五年級下冊道德與法治期末測試卷帶答案【考試直接用】
- 甘肅省蘭州市城七里河區-2023-2024學年六年級下學期小學期末畢業測試語文試卷
- 《裝飾材料與施工》考試復習題庫(含答案)
- 中小學生民法典主題班會-民法典宣講課件
- 第一單元大單元教學設計(表格式) 2023-2024學年統編版語文八年級下冊
- (正式版)SHT 3046-2024 石油化工立式圓筒形鋼制焊接儲罐設計規范
- 小學高段學生數學應用意識培養的實踐研究 開題報告
- GB/T 17592-2024紡織品禁用偶氮染料的測定
- GA/T 2015-2023芬太尼類藥物專用智能柜通用技術規范
評論
0/150
提交評論