2023年汕頭職業技術學院高職單招(數學)試題庫含答案解析_第1頁
2023年汕頭職業技術學院高職單招(數學)試題庫含答案解析_第2頁
2023年汕頭職業技術學院高職單招(數學)試題庫含答案解析_第3頁
2023年汕頭職業技術學院高職單招(數學)試題庫含答案解析_第4頁
2023年汕頭職業技術學院高職單招(數學)試題庫含答案解析_第5頁
已閱讀5頁,還剩38頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區的她2023年汕頭職業技術學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.下列數字特征一定是數據組中的數是()

A.眾數

B.中位數

C.標準差

D.平均數答案:A2.從一堆蘋果中任取5只,稱得它們的質量為(單位:克):125124121123127,則該樣本標準差s=______(克)(用數字作答).答案:由題意得:樣本平均數x=15(125+124+121+123+127)=124,樣本方差s2=15(12+02+32+12+32)=4,∴s=2.故為2.3.不等式3≤|5-2x|<9的解集為()

A.[-2,1)∪[4,7)

B.(-2,1]∪(4,7]

C.(-2,-1]∪[4,7)

D.(-2,1]∪[4,7)答案:D4.在樣本的頻率分布直方圖中,共有11個小長方形,若中間一個長方形的面積等于其他十個小長方形面積的和的14,且樣本容量是160,則中間一組的頻數為()A.32B.0.2C.40D.0.25答案:設間一個長方形的面積S則其他十個小長方形面積的和為4S,所以頻率分布直方圖的總面積為5S所以中間一組的頻率為S5S=0.2所以中間一組的頻數為160×0.2=32故選A5.已知0<α<π2,方程x2sinα+y2cosα=1表示焦點在y軸上的橢圓,則α的取值范圍______.答案:方程x2sinα+y2cosα=1化成標準形式得:x21sinα+y21cosα=1.∵方程表示焦點在y軸上的橢圓,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范圍是(π4,π2)故為:(π4,π2)6.命題“若A∩B=A,則A∪B=B”的逆否命題是()A.若A∪B=B,則A∩B=AB.若A∩B≠A,則A∪B≠BC.若A∪B≠B,則A∩B≠AD.若A∪B≠B,則A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命題“若A∩B=A,則A∪B=B”的逆否命題是“若A∪B≠B,則A∩B≠A”.故選C.7.參數方程(θ為參數)表示的曲線為()

A.圓的一部分

B.橢圓的一部分

C.雙曲線的一部分

D.拋物線的一部分答案:D8.(不等式選講選做題)已知a,b,c∈R+,且a+b+c=1,則3a+1+3b+1+3c+1的最大值為______.答案:根據柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當且僅當3a+1=3b+1=3c+1),即a=b=c=13時,(3a+1+3b+1+3c+1)2的最大值為18因此3a+1+3b+1+3c+1的最大值為32.故為:329.平面向量與的夾角為60°,=(1,0),||=1,則|+2|=(

A.7

B.

C.4

D.12答案:B10.已知橢圓的中心在原點,對稱軸為坐標軸,焦點在x軸上,短軸的一個頂點B與兩個焦點F1,F2組成的三角形的周長為4+23,且∠F1BF2=2π3,求橢圓的標準方程.答案::設長軸長為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標準方程為x24+y2=1.11.橢圓焦點在x軸,離心率為32,直線y=1-x與橢圓交于M,N兩點,滿足OM⊥ON,求橢圓方程.答案:設橢圓方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴橢圓方程為x24b2+y2b2=1.把直線方程代入化簡得5x2-8x+4-4b2=0.設M(x1,y1)、N(x2,y2),則x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴橢圓方程為25x2+85y2=1.12.求證:定義在實數集上的單調減函數y=f(x)的圖象與x軸至多只有一個公共點.答案:證明:假設函數y=f(x)的圖象與x軸有兩個交點…(2分)設交點的橫坐標分別為x1,x2,且x1<x2.因為函數y=f(x)在實數集上單調遞減所以f(x1)>f(x2),…(6分)這與f(x1)=f(x2)=0矛盾.所以假設不成立.

…(12分)故原命題成立.…(14分)13.如圖為△ABC和一圓的重迭情形,此圓與直線BC相切于C點,且與AC交于另一點D.若∠A=70°,∠B=60°,則的度數為何()

A.50°

B.60°

C.100°

D.120°

答案:C14.命題:“如果ab=0,那么a、b中至少有一個等于0.”的逆否命題為______

______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:如果a、b都不為等于0.那么ab≠015.已知點P(x,y)在曲線x=2+cosθy=2sinθ(θ為參數),則ω=3x+2y的最大值為______.答案:由題意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴當sin(θ+?)=1時,ω=3x+2y的最大值為

11故為11.16.在同一坐標系中,y=ax與y=a+x表示正確的是()A.

B.

C.

D.

答案:由y=x+a得斜率為1排除C,由y=ax與y=x+a中a同號知若y=ax遞增,則y=x+a與y軸的交點在y軸的正半軸上,由此排除B;若y=ax遞減,則y=x+a與y軸的交點在y軸的負半軸上,由此排除D,知A是正確的;故選A.17.已知a=4,b=1,焦點在x軸上的橢圓方程是(

A.

B.

C.

D.答案:C18.已知正數x,y,z滿足5x+4y+3z=10.

(1)求證:25x

24y+3z+16y23z+5x+9z25x+4y≥5;

(2)求9x2+9y2+z2的最小值.答案:(1)根據柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][25x24y+3z+16y23z+5x+9z25x+4y]≥(5x+4y+3z)2因為5x+4y+3z=10,所以25x24y+3z+16y23z+5x+9z25x+4y≥10220=5.(2)根據均值不等式,得9x2+9y2+z2≥29x2?9y2+z2=2?3x2+y2+z2,當且僅當x2=y2+z2時,等號成立.根據柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即

(x2+y2+z2)≥2,當且僅當x5=y4=z3時,等號成立.綜上,9x2+9y2+z2≥2?32=18.19.已知拋物線x2=4y的焦點為F,A、B是拋物線上的兩動點,且AF=λFB(λ>0).過A、B兩點分別作拋物線的切線,設其交點為M.

(I)證明FM.AB為定值;

(II)設△ABM的面積為S,寫出S=f(λ)的表達式,并求S的最小值.答案:(1)設A(x1,y1),B(x2,y2),M(xo,yo),焦點F(0,1),準線方程為y=-1,顯然AB斜率存在且過F(0,1)設其直線方程為y=kx+1,聯立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線4y=x2上任意一點斜率為y'=x2,則易得切線AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯立方程易解得交點M坐標,xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,FM=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,FM⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因為|AF|、|BF|分別等于A、B到拋物線準線y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當λ=1時,S取得最小值4.20.把38化為二進制數為()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以驗證所給的四個選項,在A中,2+8+32=42,在B中,2+4+32=38經過驗證知道,B中的二進制表示的數字換成十進制以后得到38,故選B.21.如圖,AB是⊙O的直徑,P是AB延長線上的一點.過P作⊙O的切線,切點為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設圓的直徑是x則三角形ABC是一個含有30°角的三角形,∴BC=12AB,三角形BPC是一個等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:422.如圖所示,圖中線條構成的所有矩形中(由6個小的正方形組成),其中為正方形的概率為

______.答案:它的長有10種取法,由長與寬的對稱性,得到它的寬也有10種取法;因為,長與寬相互獨立,所以得到長X寬的個數有:10X10=100個即總的矩形的個數有:100個長=寬的個數為:(1X1的正方形的個數)+(2X2的正方形個數)+(3X3的正方形個數)+(4X4的正方形個數)=16+9+4+1=30個即正方形的個數有:30個所以為正方形的概率是30100=0.3故為0.323.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()

A.0<a<1

B.a=1

C.a>1

D.以上均不對答案:C24.兩個樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動()

A.大

B.相等

C.小

D.無法確定答案:A25.已知△ABC,D為AB邊上一點,若AD=2DB,CD=13CA+λCB,則λ=

.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(

CB-CA)=13CA+23CB,∴λ=23,故為:23.26.若P=+,Q=+(a≥0),則P,Q的大小關系是()

A.P>Q

B.P=Q

C.P<Q

D.由a的取值確定答案:C27.(1)求過兩直線l1:7x-8y-1=0和l2:2x+17y+9=0的交點,且平行于直線2x-y+7=0的直線方程.

(2)求點A(--2,3)關于直線l:3x-y-1=0對稱的點B的坐標.答案:(1)聯立兩條直線的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1與l2交點坐標是(-1127,-1327).(2)設與直線2x-y+7=0平行的直線l方程為2x-y+c=0因為直線l過l1與l2交點(-1127,-1327).所以c=13所以直線l的方程為6x-3y+1=0.點P(-2,3)關于直線3x-y-1=0的對稱點Q的坐標(a,b),則b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,對稱點的坐標(10,-1)28.已知在一場比賽中,甲運動員贏乙、丙的概率分別為0.8,0.7,比賽沒有平局.若甲分別與乙、丙各進行一場比賽,則甲取得一勝一負的概率是______.答案:根據題意,甲取得一勝一負包含兩種情況,甲勝乙負丙,概率為:0.8×0.3=0.24;甲勝丙負乙,概率為:0.2×0.7=0.14;∴甲取得一勝一負的概率為0.24+0.14=0.38故為0.3829.選修4-2:矩陣與變換

已知矩陣A=33cd,若矩陣A屬于特征值6的一個特征向量為α1=11,屬于特征值1的一個特征向量為α2=3-2.求矩陣A的逆矩陣.答案:由矩陣A屬于特征值6的一個特征向量為α1=11,可得33cd11=611,即c+d=6;由矩陣A屬于特征值1的一個特征向量為α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩陣是23-12-1312.30.曲線x=t+1ty=12(t+1t)(t為參數)的直角坐標方程是______.答案:∵曲線C的參數方程x=t+1ty=12(t+1t)(t為參數)x=t+1t≥2,可得x的限制范圍是x≥2,再根據x2=t+1t+2,∴t+1t=x2-2,可得直角坐標方程是:x2=2(y+1),(x≥2),故為:x2=2(y+1),(x≥2).31.如圖是一幾何體的三視圖,正視圖是一等腰直角三角形,且斜邊BD長為2;側視圖一直角三角形;俯視圖為一直角梯形,且AB=BC=1,則異面直線PB與CD所成角的正切值是()A.1B.2C.12D.12答案:取AD的中點E,連接BE,PE,CE,根據題意可知BE∥CD,∴∠PBE為異面直線PB與CD所成角根據條件知,PE=1,BE=2,PE⊥BE∴tan∠PBE=12故選C.32.從5名男學生、3名女學生中選3人參加某項知識對抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個分類計數問題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當包括兩女一男時,有C32C51=15種結果,當包括兩男一女時,有C31C52=30種結果,∴根據分類加法得到共有15+30=45故選A.33.直線l只經過第一、三、四象限,則直線l的斜率k()

A.大于零

B.小于零

C.大于零或小于零

D.以上結論都有可能答案:A34.已知向量a=(3,5,1),b=(2,2,3),c=(4,-1,-3),則向量2a-3b+4c的坐標為______.答案:∵a=(3,5,1),b=(2,2,3),c=(4,-1,-3),∴向量2a-3b+4c=2(3,5,1)-3(2,2,3)+4(4,-1,-3)=(16,0,-19)故為:(16,0,-19).35.設復數z的實部是

12,且|z|=1,則z=______.答案:設復數z的虛部等于b,b∈z,由復數z的實部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故為:12±32i.36.若f(x)=ax(a>0且a≠1)的反函數g(x)滿足:g()<0,則函數f(x)的圖象向左平移一個單位后的圖象大致是下圖中的()

A.

B.

C.

D.

答案:B37.若函數,則下列結論正確的是(

)A.,在上是增函數B.,在上是減函數C.,是偶函數D.,是奇函數答案:C解析:對于時有是一個偶函數38.已知A(-1,2),B(2,-2),則直線AB的斜率是()

A.

B.

C.

D.答案:A39.已知點A(-3,8),B(2,4),若y軸上的點P滿足PA的斜率是PB斜率的2倍,則P點的坐標為______.答案:設P(0,y),則∵點P滿足PA的斜率是PB斜率的2倍,∴y-80+3=2?y-40-2∴y=5∴P(0,5)故為:(0,5)40.已知動點M到定點F(1,0)的距離比M到定直線x=-2的距離小1.

(1)求證:M點的軌跡是拋物線,并求出其方程;

(2)大家知道,過圓上任意一點P,任意作互相垂直的弦PA、PB,則弦AB必過圓心(定點).受此啟發,研究下面問題:

1過(1)中的拋物線的頂點O任意作互相垂直的弦OA、OB,問:弦AB是否經過一個定點?若經過,請求出定點坐標,否則說明理由;2研究:對于拋物線上某一定點P(非頂點),過P任意作互相垂直的弦PA、PB,弦AB是否經過定點?答案:(1)證明:由題意可知:動點M到定點F(1,0)的距離等于M到定直線x=-1的距離根據拋物線的定義可知,M的軌跡是拋物線所以拋物線方程為:y2=4x(2)(i)設A(x1,y1),B(x2,y2),lAB:y=kx+b,(b≠0)由y=kx+by2=4x消去y得:k2x2+(2bk-4)kx+b2=0,x1x2=b2k2.∵OA⊥OB,∴OA?OB=0,∴x1x2+y1y2=0,y1y2=4bk所以x1x2+(x1x2)2=0,b≠0,∴b=-2k,∴直線AB過定點M(1,0),(ii)設p(x0,y0)設AB的方程為y=mx+n,代入y2=2x得y2-2my=-2n=0∴y1+y2=2m,y1y2-2n其中y1,y2分別是A,B的縱坐標∵AP⊥PB∴kmax?kmin=-1即y1-y0x1-x0?y2-y0x2-x0=1∴(y1+y0)(y2+y0)=-4?y1y2+(y1+y2)y0+y02-4=0(-2n)+2my0+2x0+4=0,=my0+x0+2直線PQ的方程為x=my+my0+x0+2,即x=m(y+y0)+x0+2,它一定過點(x0+2,-y0)41.參數方程,(θ為參數)表示的曲線是()

A.直線

B.圓

C.橢圓

D.拋物線答案:C42.在區間[0,1]產生的隨機數x1,轉化為[-1,3]上的均勻隨機數x,實施的變換為()

A.x=3x1-1

B.x=3x1+1

C.x=4x1-1

D.x=4x1+1答案:C43.已知變量a,b已被賦值,要交換a、b的值,應采用的算法是()

A.a=b,b=a

B.a=c,b=a,c=b

C.a=c,b=a,c=a

D.c=a,a=b,b=c答案:D44.已知||=2,||=,∠AOB=150°,點C在∠AOB內,且∠AOC=30°,設(m,n∈R),則=()

A.

B.

C.

D.答案:B45.使關于的不等式有解的實數的最大值是(

)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。46.請寫出所給三視圖表示的簡單組合體由哪些幾何體組成.______.答案:由已知中的三視圖我們可以判斷出該幾何體是由一個底面面積相等的圓錐和圓柱組合而成故為:圓柱體,圓錐體47.平行線3x-4y-8=0與6x-8y+3=0的距離為______.答案:6x-8y+3=0可化為3x-4y+32=0,故所求距離為|-8-32|32+(-4)2=1910,故為:191048.已知A(0,1),B(3,7),C(x,15)三點共線,則x的值是()

A.5

B.6

C.7

D.8答案:C49.已知a=20.5,,,則a,b,c的大小關系是()

A.a>c>b

B.a>b>c

C.c>b>a

D.c>a>b答案:B50.下面五個命題:(1)所有的單位向量相等;(2)長度不等且方向相反的兩個向量不一定是共線向量;(3)由于零向量的方向不確定,故0與任何向量不平行;(4)對于任何向量a,b,必有|a+b|≤|a|+|b|.其中正確命題的序號為:______.答案:(1)單位向量指模為1的向量,方向可為任意的,故錯誤;(2)由共線向量的定義,方向相反的兩個向量一定是共線向量,故錯誤;(3)規定:零向量與任何向量為平行向量,故錯誤;(4)因為|a+b|2=a2+b2+2a?b≤a2+b2+2|a|?|b|=(|a|+|b|)2,故正確故為:(4)第2卷一.綜合題(共50題)1.甲、乙兩人進行乒乓球比賽,比賽規則為“3局2勝”,即以先贏2局者為勝.根據經驗,每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(

A.0.216

B.0.36

C.0.432

D.0.648答案:D2.已知200輛汽車通過某一段公路時的時速的頻率分布直方圖如圖所示,則時速在[60,70]的汽車大約有()輛.A.90B.80C.70D.60答案:由已知可得樣本容量為200,又∵數據落在區間[60,70]的頻率為0.04×10=0.4∴時速在[60,70]的汽車大約有200×0.4=80故選B.3.下列點在x軸上的是()

A.(0.1,0.2,0.3)

B.(0,0,0.001)

C.(5,0,0)

D.(0,0.01,0)答案:C4.四個森林防火觀察站A,B,C,D的坐標依次為(5,0),(-5,0),(0,5),(0,-5),他們都發現某一地區有火訊.若A,B觀察到的距離相差為6,且離A近,C,D觀察到的距離相差也為6,且離C近.試求火訊點的坐標.答案:設火訊點的坐標P(x,y),由于觀察到的距離相差為6,點P在雙曲線上,由于離A近,所以點P在雙曲線x29-y216=1(x≥3)上;由于離C近,所以點P在雙曲線Y29-X216=1(Y≥3)上;由這兩個方程解得:x=1277y=1277答:火訊點的坐標為:(1277,1277).5.如圖,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形內挖去半圓(圓心O在邊AC上,半圓與BC、AB相切于點C、M,與AC交于N,見圖中非陰影部分),則該半圓的半徑長為______.答案:連接OM,則OM⊥AB.設⊙O的半徑OM=OC=r.在Rt△OAM中,OA=OMsin30°=2r.在Rt△ABC中,AC=BCtan30°=3,∴3=AC=OA+OC=3r,∴r=33.故為33.6.已知空間四邊形OABC,M,N分別是OA,BC的中點,且OA=a,OB=b,OC=c,用a,b,c表示向量MN為()A.12a+12b+12cB.12a-12b+12cC.-12a+12b+12cD.-12a+12b-12c答案:如圖所示,連接ON,AN,則ON=12(OB+OC)=12(b+c),AN=12(AC+AB)=12(OC-2OA+OB)=12(-2a+b+c)=-a+12b+12c,所以MN=12(ON+AN)=-12a+12b+12c.故選C.7.在z軸上與點A(-4,1,7)和點B(3,5,-2)等距離的點C的坐標為

______.答案:由題意設C(0,0,z),∵C與點A(-4,1,7)和點B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點的坐標是(0,0,149)故為:(0,0,149)8.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等價于或解得或即故不等式的解集為。9.用反證法證明:若整系數一元二次方程ax2+bx+c=0(a≠0)有有理數根,那么b、c中至少有一個偶數時,下列假設正確的是()

A.假設a、b、c都是偶數

B.假設a、b、c都不是偶數

C.假設a、b、c至多有一個偶數

D.假設a、b、c至多有兩個偶數答案:B10.某種細菌在培養過程中,每15分鐘分裂一次(由一個分裂成兩個),這種細菌由1個繁殖成4096個需經過()A.12小時B.4小時C.3小時D.2小時答案:設共分裂了x次,則有2x=4

096,∴2x=212,又∵每次為15分鐘,∴共15×12=180(分鐘),即3個小時.故為C11.已知向量,,,則(

)A.B.C.5D.25答案:C解析:將平方即可求得C.12.設有三個命題:“①0<12<1.②函數f(x)=log

12x是減函數.③當0<a<1時,函數f(x)=logax是減函數”.當它們構成三段論時,其“小前提”是______(填序號).答案:三段話寫成三段論是:大前提:當0<a<1時,函數f(x)=logax是減函數,小前提:0<12<1,結論:函數f(x)=log

12x是減函數.其“小前提”是①.故為:①.13.在極坐標系中,點A(2,π2)關于直線l:ρcosθ=1的對稱點的一個極坐標為______.答案:在直角坐標系中,A(0,2),直線l:x=1,A關于直線l的對稱點B(2,2).由于|OB|=22,OB直線的傾斜角等于π4,且點B在第一象限,故B的極坐標為(22,π4),故為

(22,π4).14.在平面直角坐標系xOy中,設F1(-4,0),F2(4,0),方程x225+y29=1的曲線為C,關于曲線C有下列命題:

①曲線C是以F1、F2為焦點的橢圓的一部分;

②曲線C關于x軸、y軸、坐標原點O對稱;

③若P是上任意一點,則PF1+PF2≤10;

④若P是上任意一點,則PF1+PF2≥10;

⑤曲線C圍成圖形的面積為30.

其中真命題的序號是______.答案:∵x225+y29=1即為|x|5+|y|3=1表示四條線段,如圖故①④錯,②③對對于⑤,圖形的面積為3×52×4=30,故⑤對.故為②③⑤15.設復數z的實部是

12,且|z|=1,則z=______.答案:設復數z的虛部等于b,b∈z,由復數z的實部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故為:12±32i.16.已知雙曲線的兩個焦點為F1(-,0),F2(,0),P是此雙曲線上的一點,且PF1⊥PF2,|PF1|?|PF2|=2,則該雙曲線的方程是()

A.

B.

C.

D.答案:C17.求證:梯形兩條對角線的中點連線平行于上、下底,且等于兩底差的一半(用解析法證之).答案:證明見過程解析:求證:梯形兩條對角線的中點連線平行于上、下底,且等于兩底差的一半(用解析法證之).18.語句“若a>b,則a+c>b+c”是()

A.不是命題

B.真命題

C.假命題

D.不能判斷真假答案:B19.(選做題)圓內非直徑的兩條弦AB、CD相交于圓內一點P,已知PA=PB=4,PC=14PD,則CD=______.答案:連接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故為:1020.設復數z=lg(m2-2m-2)+(m2+3m+2)i,試求實數m的取值范圍,使得:

(1)z是純虛數;

(2)z是實數;

(3)z對應的點位于復平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是純虛數,則可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是實數,則可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i對應的點坐標為(lg(m2-2m-2),m2+3m+2)∴若該對應點位于復平面的第二象限,則可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分)21.(不等式選講)

已知a>0,b>0,c>0,abc=1,試證明:.答案:略解析::證明:由,所以同理:

相加得:左3……………(10分)22.拋物線y2=4x的焦點坐標為()

A.(0,1)

B.(1,0)

C.(0,2)

D.(2,0)答案:B23.下列給出的輸入語句、輸出語句和賦值語句

(1)輸出語句INPUT

a;b;c

(2)輸入語句INPUT

x=3

(3)賦值語句3=B

(4)賦值語句A=B=2

則其中正確的個數是()

A.0個

B.1個

C.2個

D.3個答案:A24.算法:第一步

x=a;第二步

若b>x則x=b;第三步

若c>x,則x=c;

第四步

若d>x,則x=d;

第五步

輸出x.則輸出的x表示()A.a,b,c,d中的最大值B.a,b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數,故選A.25.實數系的結構圖如圖所示,其中1、2、3三個方格中的內容分別為()

A.有理數、零、整數

B.有理數、整數、零

C.零、有理數、整數

D.整數、有理數、零

答案:B26.已知向量OA=(2,3),OB=(4,-1),P是線段AB的中點,則P點的坐標是()A.(2,-4)B.(3,1)C.(-2,4)D.(6,2)答案:由線段的中點公式可得OP=12(OA+OB)=(3,1),故P點的坐標是(3,1),故選B.27.參數方程(t是參數)表示的圖象是()

A.射線

B.直線

C.圓

D.雙曲線答案:A28.若k∈R,則“k>3”是“方程表示雙曲線”的()

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件答案:A29.已知直線的斜率為3,則此直線的傾斜角為()A.30°B.60°C.45°D.120°答案:∵直線的斜率為3,∴直線傾斜角α滿足tanα=3結合α∈[0°,180°),可得α=60°故選:B30.在方程(θ為參數且θ∈R)表示的曲線上的一個點的坐標是()

A.(,)

B.(,)

C.(2,-7)

D.(1,0)答案:B31.已知橢圓的短軸長等于2,長軸端點與短軸端點間的距離等于5,則此橢圓的標準方程是______.答案:由題意可得2b=2a2+b2=(5)2,解得b=1a=2.故橢圓的標準方程是x24+y2=1或y24+x2=1.故為x24+y2=1或y24+x2=1.32.在15個村莊中有7個村莊交通不方便,現從中任意選10個村莊,用X表示這10個村莊中交通不方便的村莊數,則P(X=4)=______.(用數字表示)答案:由題意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故為:14042933.

已知拋物線y2=2px(p>0)的焦點為F,過F的直線交y軸正半軸于點P,交拋物線于A,B兩點,其中點A在第一象限,若,,,則μ的取值范圍是()

A.[1,]

B.[,2]

C.[2,3]

D.[3,4]答案:B34.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過點C作⊙O的切線CD,D為切點,若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線.∴根據切線長定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.35.在極坐標系中,圓ρ=-2cosθ的圓心的極坐標是()

A.(1,)

B.(1,-)

C.(1,0)

D.(1,π)答案:D36.若F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,則1|MF1|+1|MF2|的最小值為______.答案:∵F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值為a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故為:1.37.在半徑為R的球內作一內接圓柱,這個圓柱的底面半徑和高為何值時,它的側面積最大?并求此最大值.答案:解

如圖,設內接圓柱的高為h,圓柱的底面半徑為r,則h2+4r2=4R2因為h2+4r2≥4rh,當且僅當h=2r時取等.所以4R2≥4rh,即rh≤R2所以,S側=2πrh≤2πR2,當且僅當h=2r時取等.又因為h2+4r2=4R2,所以r=22R,h=2R時取等綜上,當內接圓柱的底面半徑為22R,高為2R時,它的側面積最大,為2πR238.已知點M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點M的坐標是

______.答案:∵點M在z軸上,∴設點M的坐標為(0,0,z)又|MA|=|MB|,由空間兩點間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點M的坐標是(0,0,-3).故為:(0,0,-3).39.已知方程(1+k)x2-(1-k)y2=1表示焦點在x軸上的雙曲線,則k的取值范圍為(

A.-1<k<1

B.k>1

C.k<-1

D.k>1或k<-1答案:A40.已知點M(1,2),N(1,1),則直線MN的傾斜角是()A.90°B.45°C.135°D.不存在答案:∵點M(1,2),N(1,1),則直線MN的斜率不存在,故直線MN的傾斜角是90°,故選A.41.若A,B,C是直線存在實數x使得,實數x為()

A.-1

B.0

C.

D.答案:A42.一牧場有10頭牛,因誤食含有病毒的飼料而被感染,已知該病的發病率為0.02.設發病的牛的頭數為ξ,則Dξ=______;.答案:∵由題意知該病的發病率為0.02,且每次實驗結果都是相互獨立的,∴ξ~B(10,0.02),∴由二項分布的方差公式得到Dξ=10×0.02×0.98=0.196.故為:0.19643.圓錐的側面展開圖是一個半徑長為4的半圓,則此圓錐的底面半徑為

______.答案:設圓錐的底面半徑為R,則由題意得,2πR=π×4,即R=2,故為:2.44.已知一直線的斜率為3,則這條直線的傾斜角是()A.30°B.45°C.60°D.90°答案:設直線的傾斜角為α,由直線的斜率為3,得到:tanα=3,又α∈(0,180°),所以α=60°.故選C45.命題“p:任意x∈R,都有x≥2”的否定是______.答案:命題“任意x∈R,都有x≥2”是全稱命題,否定時將量詞對任意的x∈R變為存在實數x,再將不等號≥變為<即可.故為:存在實數x,使得x<2.46.4個人各寫一張賀年卡,集中后每人取一張別人的賀年卡,共有______種取法.答案:根據分類計數問題,可以列舉出所有的結果,1甲乙互換,丙丁互換2甲丙互換,乙丁互換3甲丁互換,乙丙互換4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通過列舉可以得到共有9種結果,故為:947.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為

______.答案:如圖,過雙曲線的頂點A、焦點F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為348.下面是某工藝品廠隨機抽取兩個批次的初加工矩形寬度與長度的比值樣本:

甲批次:0.598

0.625

0.628

0.595

0.639

乙批次:0.618

0.613

0.592

0.622

0.620

我們將比值為0.618的矩形稱為“完美矩形”,0.618為標準值,根據上述兩個樣本來估計兩個批次的總體平均數,正確結論是()

A.甲批次的總體平均數與標準值更接近

B.乙批次的總體平均數與標準值更接近

C.兩個批次總體平均數與標準值接近程度相同

D.以上選項均不對答案:A49.試比較nn+1與(n+1)n(n∈N*)的大小.

當n=1時,有nn+1______(n+1)n(填>、=或<);

當n=2時,有nn+1______(n+1)n(填>、=或<);

當n=3時,有nn+1______(n+1)n(填>、=或<);

當n=4時,有nn+1______(n+1)n(填>、=或<);

猜想一個一般性的結論,并加以證明.答案:當n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,根據上述結論,我們猜想:當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設當n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當n=k+1時也成立,∴當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.50.參數方程,(θ為參數)表示的曲線是()

A.直線

B.圓

C.橢圓

D.拋物線答案:C第3卷一.綜合題(共50題)1.已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,則A1B1=A2B2是l1∥l2的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分又非必要條件答案:當A1B1=A2B2

時,兩直線可能平行,也可能重合,故充分性不成立.當l1∥l2時,B1與B2可能都等于0,故A1B1=A2B2

不一定成立,故必要性不成立.綜上,A1B1=A2B2是l1∥l2的既非充分又非必要條件,故選D.2.已知:如圖,CD是⊙O的直徑,AE切⊙O于點B,DC的延長線交AB于點A,∠A=20°,則

∠DBE=______.答案:連接BC,∵CD是⊙O的直徑,∴∠CBD=90°,∵AE是⊙O的切線,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故為:∠DBE=55°.3.滿足條件|z|=|3+4i|的復數z在復平面上對應點的軌跡是()

A.一條直線

B.兩條直線

C.圓

D.橢圓答案:C4.極坐標系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點).答案:∵極坐標系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|

=

3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.5.選修4-4:坐標系與參數方程

已知極點O與原點重合,極軸與x軸的正半軸重合.點A,B的極坐標分別為(2,π),(22,π4),曲線C的參數方程為答案:(Ⅰ)S△AOB=12×2×26.使方程

mx+ny+r=0與方程

2mx+2ny+r+1=0表示兩條直線平行(不重合)的等價條件是()A.m=n=r=2B.m2+n2≠0,且r≠1C.mn>0,且r≠1D.mn<0,且r≠1答案:mx+ny+r=0與方程

2mx+2ny+r+1=0表示兩條直線平行(不重合)的等價條件是m2+n2≠0,且m2m=n2n≠rr+1,即m2+n2≠0,且r≠1,故選B.7.直線和圓交于兩點,則的中點

坐標為(

)A.B.C.D.答案:D解析:,得,中點為8.書架上有5本數學書,4本物理書,5本化學書,從中任取一本,不同的取法有()A.14B.25C.100D.40答案:由題意,∵書架上有5本數學書,4本物理書,5本化學書,∴從中任取一本,不同的取法有5+4+5=14種故選A.9.用反證法證明“3是無理數”時,第一步應假設“______.”答案:反證法肯定題設而否定結論,從而得出矛盾,題設“3是無理數”,那么假設為:3是有理數.故為3是有理數.10.下列各組集合,表示相等集合的是()

①M={(3,2)},N={(2,3)};

②M={3,2},N={2,3};

③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不對答案:①中M中表示點(3,2),N中表示點(2,3);②中由元素的無序性知是相等集合;③中M表示一個元素,即點(1,2),N中表示兩個元素分別為1,2.所以表示相等的集合是②.故選B.11.已知按向量平移得到,則

.答案:3解析:由平移公式可得解得.12.如圖,割線PAB經過圓心O,PC切圓O于點C,且PC=4,PB=8,則△PBC的外接圓的面積為______.答案:∵PC切圓O于點C,∴根據切割線定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55設△PBC的外接圓的半徑為R,則455=2R,解得R=25.∴△PBC的外接圓的面積為20π故為:20π13.若點A分有向線段所成的比是2,則點C分有向線段所成的比是()

A.

B.3

C.-2

D.-3答案:D14.點(1,1)在圓(x-a)2+(y+a)2=4的內部,則a的取值范圍是(

A.-1<a<1

B.0<a<1

C.a<-1或a>1

D.a=±1答案:A15.關于如圖所示幾何體的正確說法為______.

①這是一個六面體;

②這是一個四棱臺;

③這是一個四棱柱;

④這是一個四棱柱和三棱柱的組合體;

⑤這是一個被截去一個三棱柱的四棱柱.答案:①因為有六個面,屬于六面體的范圍,②這是一個很明顯的四棱柱,因為側棱的延長線不能交與一點,所以不正確.③如果把幾何體放倒就會發現是一個四棱柱,④可以有四棱柱和三棱柱組成,⑤和④的想法一樣,割補方法就可以得到.故為:①③④⑤.16.算法框圖中表示判斷的是()A.

B.

C.

D.

答案:∵在算法框圖中,表示判斷的是菱形,故選B.17.兩圓相交于點A(1,3)、B(m,-1),兩圓的圓心均在直線x-y+c=0上,則m+c的值為(

A.3

B.2

C.-1

D.0答案:A18.與雙曲線x2-y24=1有共同的漸近線,且過點(2,2)的雙曲線的標準方程為______.答案:設雙曲線方程為x2-y24=λ∵過點(2,2),∴λ=3∴所求雙曲線方程為x23-y212=1故為x23-y212=119.棱長為2的正方體ABCD-A1B1C1D1中,=(

A.

B.4

C.

D.-4答案:D20.已知α1,α2,…αn∈(0,π),n是大于1的正整數,求證:|sin(α1+α2+…+αn)|<sinα1+sinα2+…+sinαn.答案:證明:下面用數學歸納法證明(1)n=2時,|sin(α1+α2)|-|sinα1cosα2+cosα1sinα2|≤sinα1|cosα2|+|cosα1|?|sinα2|<sinα1+sinα2,所以n=2時成立.(2)假設n=k(k≥2)時成立,即|sin(α1+α2+Λ+αk)|<sinα1+sinα2+Λ+sinαk當n=k+1時,|sin(α1+α2+Λ+αk+1)|==|sinαk+1cos(α1+Λαk)+cosαk+1sin(α1+Λαk)|≤sinαk+1|cos(α1+Λ+αk)|+|cosαk+1|?|sin(α1+Λαk)|<sinαk+1+|sin(α1+Λαk)|<sinα1+sinα2+Λ+sinαk+1∴n=k+1時也成立.由(1)(2)得,原式成立.21.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()

①若K2的觀測值滿足K2≥6.635,我們有99%的把握認為吸煙與患肺病有關系,那么在100個吸煙的人中必有99人患有肺病;

②從獨立性檢驗可知有99%的把握認為吸煙與患病有關系時,我們說某人吸煙,那么他有99%的可能患有肺病;

③從統計量中得知有95%的把握認為吸煙與患肺病有關系,是指有5%的可能性使得推斷出現錯誤.

A.①

B.①③

C.③

D.②答案:C22.(坐標系與參數方程)

從極點O作直線與另一直線ρcosθ=4相交于點M,在OM上取一點P,使OM?OP=12.

(1)求點P的軌跡方程;

(2)設R為直線ρcosθ=4上任意一點,試求RP的最小值.答案:(1)設動點P的坐標為(ρ,θ),M的坐標為(ρ0,θ),則ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即為所求的軌跡方程.(2)由(1)知P的軌跡是以(32,0)為圓心,半徑為32的圓,而直線l的解析式為x=4,所以圓與x軸的交點坐標為(3,0),易得RP的最小值為123.若施化肥量x與小麥產量y之間的回歸方程為y=250+4x(單位:kg),當施化肥量為50kg時,預計小麥產量為______kg.答案:根據回歸方程為y=250+4x,當施化肥量為50kg,即x=50kg時,y=250+4x=250+200=450kg故為:45024.設函數f(x)=(1-2a)x+b是R上的增函數,則()A.a>12B.a<12C.a≥12D.a≤12答案:∵函數f(x)=(1-2a)x+b是R上的增函數,∴1-2a>0,∴a<12.故選B.25.利用計算機隨機模擬方法計算y=x2與y=4所圍成的區域Ω的面積時,可以先運行以下算法步驟:

第一步:利用計算機產生兩個在[0,1]區間內的均勻隨機數a,b;

第二步:對隨機數a,b實施變換:答案:根據題意可得,點落在y=x2與y=4所圍成的區域Ω的點的概率是100-34100=66100,矩形的面積為4×4=16,陰影部分的面積為S,則有S16=66100,∴S=10.56.故為:10.56.26.若向量a,b,c滿足a∥b且a⊥c,則c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故為:0.27.兩條直線x-y+6=0與x+y+6=0的夾角為()

A.

B.

C.0

D.答案:D28.設隨機變量ξ的概率分布如表所示:

求:(l)P(ξ<1),P(ξ≤1),P(ξ<2),P(ξ≤2);

(2)P(x)=P(ξ≤x),x∈R.答案:(1)根據所給的分布列可知14+13+m+112=1,∴m=13,∴P(ξ<1)=0P(ξ≤1)=P(ξ=1)=14P(ξ<2)=P(ξ≤1)=P(ξ=1)=14P(ξ≤2)=P(ξ=1)+P(ξ=2)=14+13=712(2)根據所給的分布列和第一問做出的結果,得到P(X)=14,(x≤1)P(X)=712,(1<X≤2)P(X)=1112,(2<x≤3)p(X)=1,(X≥3)29.如圖,在復平面內,點A表示復數z的共軛復數,則復數z對應的點是()A.AB.BC.CD.D答案:兩個復數是共軛復數,兩個復數的實部相同,下部相反,對應的點關于x軸對稱.所以點A表示復數z的共軛復數的點是B.故選B.30.已知函數f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),則實數a的取值范圍是______.答案:函數f(x)=2x,x≥01,

x<0,x<0時是常函數,x≥0時是增函數,由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.31.某科目考試有30道題每小題有三個選項,每題2分,另有20道題,每題有四個選項每題3分,每題只有一個答案,某人隨機去選答案,則平均能得______分.答案:由題意,30道題每小題有三個選項,每題2分,每題只有一個,某人隨機去選,則可得2×30×13=20分;20道題,每題有四個選項每題3分,每題只有一個,某人隨機去選,則可得3×20×14=15分故平均能得35分故為:35分.32.大家知道,在數列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則

sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.

問:(1)這種猜想,你認為正確嗎?

(2)不管猜想是否正確,這個結論是通過什么推理方法得到的?

(3)如果結論正確,請用數學歸納法給予證明.答案:(1)猜想正確;(2)這是一種類比推理的方法;(3)由類比可猜想,a=14,n=1時,a+b+c+d=1;n=2時,16a+8b+4c+d=9;n=3時,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數學歸納法證明:①n=1時,結論成立;②假設n=k時,結論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時,左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立33.已知向量,,則“=λ,λ∈R”成立的必要不充分條件是()

A.+=

B.與方向相同

C.⊥

D.∥答案:D34.滿足{1,2}∪A={1,2,3}的集合A的個數為______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的個數為4.35.用反證法證明命題:“a,b,c,d∈R,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論