




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
OverviewOverviewPart1:ReviewofObjectTracking?SingleObjectTracking(SOT)?VideoObjectSegmentation(VOS)?MultipleObjectTracking(MOT)?Multi-ObjectTrackingandSegmentation(MOTS)?SummaryPart2:TowardsGrandUnificationofObjectTracking?GeneralVisionModels(GVM)?UnificationofObjectTracking?Unicorn?Experiments?FurtherAnalysis PartPart1:ReviewofObjectTracking?SingleObjectTracking(SOT)?VideoObjectSegmentation(VOS)?MultipleObjectTracking(MOT)?Multi-ObjectTrackingandSegmentation(MOTS) SingleSingleObjectTracking(SOT)TrackanarbitraryobjectinavideogivenitsinitiallocationSingle-object,Any-classOcclusion,LightChange,BackgroundClutter,etc. zCorrHead !Online !Head !TransformerzHeadxfffSingleObjectTrackingzCorrHead !Online !Head !TransformerzHeadxfffSingleObjectTracking(SOT)SiameseRPNf !fx?SiamRPN(CVPR18)?DaSiamRPN(ECCV18)?SiameRPN++(CVPR19)?Ocean(ECCV20)zDCFx?ATOM(CVPR19)?DiMP(ICCV19)?PrDiMP(CVPR20)?KYS(ECCV20)f !fTransf !f?TransT(CVPR21)?STARK(ICCV21)MostSOTmethodsarebasedonthesearchregion.Pros:Cons:?SavingcomputationV.S?Sensitivetotemporarytrackingfailure?Filteringoutdistractors?Time-consumingwhennumofobjectsislarge UnsupervisedVOSReferringUnsupervisedVOSReferringVOSVideoObjectSegmentation(VOS)nGoalnSegmentspecificobjectspreciselyinavideo.SegmentsalientmovingobjectSemi-supervisedVOSSegmentobjectsgiveninthe1stframebymasksSegmentobjectsgiveninthe1stframebylanguageSTM(ICCVSTM(ICCV19)CFBI(ECCV20)STCN(NeurIPS21)VideoObjectSegmentation(VOS)Semi-supervisedVOSisdominatedbySpace-TimeMemoryNetworkAlthoughachievinggreatperformance,STM-basedmethodssufferfromthefollowingdisadvantages:?Hugetimeandspacecomplexity,especiallyforhighspatialresolutionandthelongsequence.?Highlyrelyingonhigh-qualitymaskannotationsonthefirstframe.MultipleObjectMultipleObjectTracking(MOT)nGoalnTrackallobjectsofspecificclassesinavideo.MOTChallengeBDD100KVisdrone(1class:Person)(8classes:Car,pedestrian,etc)(10classes:Car,pedestrian,etc)ParadigmParadigmMultipleObjectTracking(MOT)RepresentativeMethodsuTrackingbyDetectionuTrackingbyDetection(SORT,DeepSORT,StrongSORT)uJointDetectionandTrackinguJointDetectionandTracking(JDE,FairMOT,CenterTrack,QDTrack)(TrackFormer,GTR)MOTmethodstakesthehigh-resolutionwholeimageastheinputtodetectobjectsascompletelyaspossible.Multi-ObjectTrackingandSegmentation(MOTS)nGoalnSegmentallobjectsofspecificclassesinavideo.MOTSChallengeBDD100KMOTS(1class:Person)(8classes:Car,pedestrian,etc)MOTScanbeseenasavariantofMOTbyreplacingboxeswithmasks.SummarSummaryReferenceOutputsClassTrackspervideoRepresentativeMethodsTypicalInputsSOTInitialboxBoxesagnosticOneOne-ShotDetectionSmallsearchregionVOSInitialmaskMasksagnosticSeveralSTMMedium-resolutionWholeImageMOTNOBoxesspecificTensorhundredsDetection+AssociationHigh-resolutionWholeImageMOTSNOMasksspecificTensorhundredsDetection+AssociationHigh-resolutionWholeImagettherearelargegapsbetweenthefourtrackingtasks?GeneralVisionModels(GVM)?UnificationofObjectTracking?Unicorn?Experiments?FurtherAnalysis entAIvsAGI–CurrentweakAIisdesignedforsolvingonespecifictask.–Artificialgeneralintelligence(AGI)isexpectedtounderstandorlearnanyintellectualtaskthatahumanbeingcan. ?Pioneeringworksinthepastyear2021.082021.112021.112022.01ies Threeobstacleshinderingtheunification:(1)Thecharacteristicsoftrackedobjectsvary(onetargetofanyclassgiveninthereferenceframev.stensevenhundredsofinstancesofspecificcategories)(2)SOTandMOTrequiredifferenttypesofcorrespondence.(pixel-levelcorrespondencedistinguishingthetargetfromthebackgroundv.sinstance-levelcorrespondencematchingthecurrentlydetectedobjectswithprevioustrajectories)(3)DifferentInputs.(smallsearchregiontosavecomputationandfilterpotentialdistractorsv.shigh-resolutionfullimagefordetectinginstancesascompleteaspossible) ?WeproposeUnicorn,aunifiedsolutionforSOT,MOT,VOSandMOTS.?Unicornaccomplishesthegreatunificationofthenetworkarchitectureandthelearningparadigmforfourtrackingtasks.?Unicornputsforwardsnewstate-of-the-artperformanceonmultiplechallengingtrackingbenchmarkswiththesamemodelparameters. Unifiedinputsandbackbone?Takingthefullimagesasinputsforalltasks.?Referenceframeisthe1stframeforSOT&VOSandthe(t-1)thframeforMOT&MOTS?Oneunifiedbackbone(ConvNeXtbydefault)ErefeRhwxcEcureRhwxcCpixeRhwxhwForMOT&MOTS,TheinstanceembeddingeisextractedfromtheframeembeddingE,wherethecenteroftheinstanceislocatederefeRMxc,ecureRNxcCinsteRNxMCinstisthesub-matrixofCpixLearninghighlydiscriminativeembedding{Eref,Ecur}isthekeytobuildingprecisecorrespondenceforalltrackingtasks.Aninteractionmoduleisusedtoenhancedtheoriginalimagefeature.Bydefaultweusethedeformableattentionblockforinteraction.LearningCorrespondencebyPropagation&LearningCorrespondencebyPropagation&Association.?ForSOT&VOS,Correspondencehelpstopropagatethetargetmapfromthereferenceframetothecurrentframe.?ForMOT&MOTS,Correspondencehelpstomatchthedetectionsonthecurrentframewiththetrajectoriesonthereferenceframe.Weintroducethetargetpriorastheswitchamongfourtrackingtasks.?ForSOT&VOS,thetargetpriorcanenhancetheoriginalFPNfeatureandmakesthenetworkfocusonthetrackedtarget.?ForMOT&MOTS,thefusedfeatureF′degeneratesbacktotheoriginalFPNfeatureFtodetectobjectsofspecificclasses.ObjectObjectdetectionheadbasedonYOLOXandCondInst?One-stage,anchor-free?NoRoIoperationssuchasRoI-AlignYOLOXHeadforobjectdetectionCondInstHeadforinstancesegmentationAddthemaskbranchandfreezeotherparametersStage1Target:Correspondence+DetectionLoss:Lstage1=Lcorr+LdetData:1:1fromSOT&MOTSOT:weuseCOCO,LaSOT,GOT-10KandTrackingNetMOT:?ForMOT17,weuseCrowdhuman,ETHZ,CityPerson,MOT17?ForBDD100K,weuseBDD100KStage2Target:MaskLoss:Lstage2=LmaskData:1:1fromVOS&MOTSVOS:weuseCOCO,DAVIS,Youtube-VOSMOTS:?ForMOTS,weuseCOCOandMOTS?ForBDD100K,weuseBDD100K?TrainingofVOS&MOTSwouldnotimpacttheperformanceofSOT&MOT.ForuserswhoareonlyinterestedintheSOT&MOT,runningStage1isenough.?Ineachstage,wetrainthemodel
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 六年級語文后進生學習習慣改善計劃
- 電商平臺客服團隊組建計劃
- 采購法務與供應鏈風險管理合作協議
- 購物中心導購員及顧客服務合同
- 智能物流場監管與物流配送服務協議
- 高端制造廠房租賃安全與知識產權保護協議
- 產權置換房產交易定金協議書
- 北師大版小學五年級音樂教學計劃
- 幼兒園中班游戲活動實施計劃
- T/CSWSL 034-2021優質雞蛋生產技術規程
- 醫院藥物臨床試驗倫理委員會倫理審查申請及受理表
- 2021譯林版高中英語選擇性必修三課文翻譯
- 智能網聯汽車線控技術課件
- 鄭州大學ppt模板
- (完整版)ECRS培訓課件
- 學校端午假期致學生家長一封信
- 第1本書出體旅程journeys out of the body精教版2003版
- 塑料制品事業部獨立核算體系文件
- 《鴻門宴》話劇劇本
- 灸法操作規程完整
- 金蝶ERP實施-01-10-02供應鏈系統調研報告
評論
0/150
提交評論