




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.方程x(x-2)+x-2=0的兩個根為()A., B.,C., D.,2.九年級(2)班同學根據興趣分成五個小組,各小組人數分布如圖所示,則在扇形圖中第一小組對應的圓心角度數是()A. B. C. D.3.下列說法錯誤的是()A.必然事件的概率為1B.數據1、2、2、3的平均數是2C.數據5、2、﹣3、0的極差是8D.如果某種游戲活動的中獎率為40%,那么參加這種活動10次必有4次中獎4.某市公園的東、西、南、北方向上各有一個入口,周末佳佳和琪琪隨機從一個入口進入該公園游玩,則佳佳和琪琪恰好從同一個入口進入該公園的概率是()A. B. C. D.5.若關于的一元二次方程x(x+1)+ax=0有兩個相等的實數根,則實數a的值為()A. B.1 C. D.6.不等式3x<2(x+2)的解是()A.x>2 B.x<2 C.x>4 D.x<47.1.桌面上放置的幾何體中,主視圖與左視圖可能不同的是()A.圓柱B.正方體C.球D.直立圓錐8.如圖,矩形ABOC的頂點A的坐標為(﹣4,5),D是OB的中點,E是OC上的一點,當△ADE的周長最小時,點E的坐標是()A.(0,) B.(0,) C.(0,2) D.(0,)9.定義運算:a?b=2ab.若a,b是方程x2+x-m=0(m>0)的兩個根,則(a+1)?a-(b+1)?b的值為()A.0B.2C.4mD.-4m10.下列基本幾何體中,三視圖都是相同圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.關于x的一元二次方程(k-1)x2+6x+k2-k=0的一個根是0,則k的值是______.12.如圖,已知圓錐的底面⊙O的直徑BC=6,高OA=4,則該圓錐的側面展開圖的面積為.13.已知、為兩個連續的整數,且,則=________.14.若數據2、3、5、3、8的眾數是a,則中位數是b,則a﹣b等于_____.15.已知a+b=4,a-b=3,則a2-b2=____________.16.如圖,平行四邊形ABCD中,AB=AC=4,AB⊥AC,O是對角線的交點,若⊙O過A、C兩點,則圖中陰影部分的面積之和為_____.17.化簡:32三、解答題(共7小題,滿分69分)18.(10分)在平面直角坐標系xOy中,函數(x>0)的圖象與直線l1:y=x+b交于點A(3,a-2).(1)求a,b的值;(2)直線l2:y=-x+m與x軸交于點B,與直線l1交于點C,若S△ABC≥6,求m的取值范圍.19.(5分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF,(1)求證:AF=DC;(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結論.20.(8分)如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;(2)將△ABC繞原點O逆時針旋轉90°后得到△A2B2C2,請畫出△A2B2C2;(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)21.(10分)拋物線y=ax2+bx+3(a≠0)經過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達式;(2)求∠ACB的度數;(3)點D是拋物線上的一動點,是否存在點D,使得tan∠DCB=tan∠ACO.若存在,請求出點D的坐標,若不存在,說明理由.22.(10分)如圖,AB是⊙O的直徑,⊙O過BC的中點D,DE⊥AC.求證:△BDA∽△CED.23.(12分)如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DE交BC于點F,連接BE,EF.CD與BE相等?若相等,請證明;若不相等,請說明理由;若∠BAC=90°,求證:BF1+CD1=FD1.24.(14分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發放,早餐一人一份,一份兩樣,一樣一個.按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據因式分解法,可得答案.【詳解】解:因式分解,得(x-2)(x+1)=0,
于是,得x-2=0或x+1=0,
解得x1=-1,x2=2,
故選:C.【點睛】本題考查了解一元二次方程,熟練掌握因式分解法是解題關鍵.2、C【解析】試題分析:由題意可得,第一小組對應的圓心角度數是:×360°=72°,故選C.考點:1.扇形統計圖;2.條形統計圖.3、D【解析】試題分析:A.概率值反映了事件發生的機會的大小,必然事件是一定發生的事件,所以概率為1,本項正確;B.數據1、2、2、3的平均數是1+2+2+34C.這些數據的極差為5﹣(﹣3)=8,故本項正確;D.某種游戲活動的中獎率為40%,屬于不確定事件,可能中獎,也可能不中獎,故本說法錯誤,故選D.考點:1.概率的意義;2.算術平均數;3.極差;4.隨機事件4、B【解析】
首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果,可求得佳佳和琪琪恰好從同一個入口進入該公園的情況,再利用概率公式求解即可求得答案.【詳解】畫樹狀圖如下:由樹狀圖可知,共有16種等可能結果,其中佳佳和琪琪恰好從同一個入口進入該公園的有4種等可能結果,所以佳佳和琪琪恰好從同一個入口進入該公園的概率為,故選B.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數與總情況數之比.5、A【解析】【分析】整理成一般式后,根據方程有兩個相等的實數根,可得△=0,得到關于a的方程,解方程即可得.【詳解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有兩個相等的實數根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故選A.【點睛】本題考查一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.6、D【解析】
不等式先展開再移項即可解答.【詳解】解:不等式3x<2(x+2),展開得:3x<2x+4,移項得:3x-2x<4,解之得:x<4.故答案選D.【點睛】本題考查了解一元一次不等式,解題的關鍵是熟練的掌握解一元一次不等式的步驟.7、B【解析】試題分析:根據從正面看得到的視圖是主視圖,從左邊看得到的圖形是左視圖,從上面看得到的圖形是俯視圖,正方體主視圖與左視圖可能不同,故選B.考點:簡單幾何體的三視圖.8、B【解析】解:作A關于y軸的對稱點A′,連接A′D交y軸于E,則此時,△ADE的周長最小.∵四邊形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐標為(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中點,∴D(﹣2,0).設直線DA′的解析式為y=kx+b,∴,∴,∴直線DA′的解析式為.當x=0時,y=,∴E(0,).故選B.9、A【解析】【分析】由根與系數的關系可得a+b=-1然后根據所給的新定義運算a?b=2ab對式子(a+1)?a-(b+1)?b用新定義運算展開整理后代入進行求解即可.【詳解】∵a,b是方程x2+x-m=0(m>0)的兩個根,∴a+b=-1,∵定義運算:a?b=2ab,∴(a+1)?a-(b+1)?b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故選A.【點睛】本題考查了一元二次方程根與系數的關系,新定義運算等,理解并能運用新定義運算是解題的關鍵.10、C【解析】
根據主視圖、左視圖、俯視圖的定義,可得答案.【詳解】球的三視圖都是圓,故選C.【點睛】本題考查了簡單幾何體的三視圖,熟記特殊幾何體的三視圖是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2.【解析】試題解析:由于關于x的一元二次方程的一個根是2,把x=2代入方程,得,解得,k2=2,k2=2當k=2時,由于二次項系數k﹣2=2,方程不是關于x的二次方程,故k≠2.所以k的值是2.故答案為2.12、15π.【解析】試題分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,側面展開圖的面積為:×6π×5=15π.故答案為15π.考點:圓錐的計算.13、11【解析】
根據無理數的性質,得出接近無理數的整數,即可得出a,b的值,即可得出答案.【詳解】∵a<<b,a、b為兩個連續的整數,
∴,
∴a=5,b=6,
∴a+b=11.
故答案為11.【點睛】本題考查的是估算無理數的大小,熟練掌握無理數是解題的關鍵.14、2【解析】
將數據排序后,位置在最中間的數值。即將數據分成兩部分,一部分大于該數值,一部分小于該數值。中位數的位置:當樣本數為奇數時,中位數=(N+1)/2;當樣本數為偶數時,中位數為N/2與1+N/2的均值;眾數是在一組數據中,出現次數最多的數據。根據定義即可算出.【詳解】2、1、5、1、8中只有1出現兩次,其余都是1次,得眾數為a=1.2、1、5、1、8重新排列2、1、1、5、8,中間的數是1,中位數b=1.∴a﹣b=1-1=2.故答案為:2.【點睛】中位數與眾數的定義.15、1.【解析】
a2-b2=(a+b)(a-b)=4×3=1.故答案為:1.考點:平方差公式.16、1.【解析】
∵∠AOB=∠COD,∴S陰影=S△AOB.∵四邊形ABCD是平行四邊形,∴OA=AC=×1=2.∵AB⊥AC,∴S陰影=S△AOB=OA?AB=×2×1=1.【點睛】本題考查了扇形面積的計算.17、-6【解析】
根據二次根式的乘法運算法則以及絕對值的性質和二次根式的化簡分別化簡整理得出即可:【詳解】32故答案為-6三、解答題(共7小題,滿分69分)18、(1)a=3,b=-2;(2)m≥8或m≤-2【解析】
(1)把A點坐標代入反比例解析式確定出a的值,確定出A坐標,代入一次函數解析式求出b的值;(2)分別求出直線l1與x軸交于點D,再求出直線l2與x軸交于點B,從而得出直線l2與直線l1交于點C坐標,分兩種情況進行討論:①當S△ABC=S△BCD+S△ABD=6時,利用三角形的面積求出m的值,②當S△ABC=S△BCD?S△ABD=6時,利用三角形的面積求出m的值,從而得出m的取值范圍.【詳解】(1)∵點A在圖象上∴∴a=3∴A(3,1)∵點A在y=x+b圖象上∴1=3+b∴b=-2∴解析式y=x-2(2)設直線y=x-2與x軸的交點為D∴D(2,0)①當點C在點A的上方如圖(1)∵直線y=-x+m與x軸交點為B∴B(m,0)(m>3)∵直線y=-x+m與直線y=x-2相交于點C∴解得:∴C∵S△ABC=S△BCD-S△ABD≥6∴∴m≥8②若點C在點A下方如圖2∵S△ABC=S△BCD+S△ABD≥6∴∴m≤-2綜上所述,m≥8或m≤-2【點睛】此題考查了一次函數與反比例函數的交點問題,三角形的面積,利用了數形結合的思想,熟練掌握待定系數法是解本題的關鍵.19、(1)見解析(2)見解析【解析】
(1)根據AAS證△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四邊形ADCF是平行四邊形,根據直角三角形斜邊上中線性質得出CD=AD,根據菱形的判定推出即可.【詳解】解:(1)證明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中點,AD是BC邊上的中線,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四邊形ADCF是菱形,證明如下:∵AF∥BC,AF=DC,∴四邊形ADCF是平行四邊形.∵AC⊥AB,AD是斜邊BC的中線,∴AD=DC.∴平行四邊形ADCF是菱形20、(1)畫圖見解析;(2)畫圖見解析;(3)三角形的形狀為等腰直角三角形.【解析】【分析】(1)利用點平移的坐標特征寫出A1、B1、C1的坐標,然后描點即可得到△A1B1C1為所作;(2)利用網格特定和旋轉的性質畫出A、B、C的對應點A2、B2、C2,從而得到△A2B2C2,(3)根據勾股定理逆定理解答即可.【詳解】(1)如圖所示,△A1B1C1即為所求;(2)如圖所示,△A2B2C2即為所求;(3)三角形的形狀為等腰直角三角形,OB=OA1=,A1B==,即OB2+OA12=A1B2,所以三角形的形狀為等腰直角三角形.【點睛】本題考查了作圖﹣旋轉變換:根據旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.21、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D點坐標為(1,2)或(4,﹣25).【解析】
(1)設交點式y=a(x+1)(x﹣),展開得到﹣a=3,然后求出a即可得到拋物線解析式;(2)作AE⊥BC于E,如圖1,先確定C(0,3),再分別計算出AC=,BC=,接著利用面積法計算出AE=,然后根據三角函數的定義求出∠ACE即可;(3)作BH⊥CD于H,如圖2,設H(m,n),證明Rt△BCH∽Rt△ACO,利用相似計算出BH=,CH=,再根據兩點間的距離公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接著通過解方程組得到H(,﹣)或(),然后求出直線CD的解析式,與二次函數聯立成方程組,解方程組即可.【詳解】(1)設拋物線解析式為y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴拋物線解析式為y=﹣2x2+x+3;(2)作AE⊥BC于E,如圖1,當x=0時,y=﹣2x2+x+3=3,則C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==AE?BC=OC?AB,∴AE==.在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;(3)作BH⊥CD于H,如圖2,設H(m,n).∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①m2+(n﹣3)2=()2=,②②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.當n=﹣時,m=2n+=,此時H(,﹣),易得直線CD的解析式為y=﹣7x+3,解方程組得:或,此時D點坐標為(4,﹣25);當n=時,m=2n+=,此時H(),易得直線CD的解析式為y=﹣x+3,解方程組得:或,此時D點坐標為(1,2).綜上所述:D點坐標為(1,2)或(4,﹣25).【點睛】本題是二次函數綜合題.熟練掌握二次函數圖象上點的坐標特征、二次函數的性質和相似三角形的判定的性質;會利用待定系數法求函數解析式,把求兩函數交點問題轉化為解方程組的問題;理解坐標與圖形性質;會運用分類討論的思想解決數學問題.22、證明見解析.【解析】
不難看出△BDA和△CED都是直角三角形,證明△BDA∽△CED,只需要另外找一對角相等即可,由于AD是△ABC的中線,又可證AD⊥BC,即AD為BC邊的中垂線,從而得到∠B=∠C,即可證相似.【詳解】∵AB是⊙O直徑,∴AD⊥BC,又BD=CD,∴AB=AC,∴∠B=∠C,又∠ADB=∠DEC=90°,∴△BDA∽△CED.【點睛】本題重點考查了圓周角定理、直徑所對的圓周角為直角及相似三角形判定等知識的綜合運用.23、(1)CD=BE,理由見解析;(1)證明見解析.【解析】
(1)由兩個三角形為等腰三角形可得AB=AC,AE=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 扎蘭屯職業學院《醫學超聲技術》2023-2024學年第二學期期末試卷
- 西安思源學院《商業演出策劃與實踐》2023-2024學年第二學期期末試卷
- 山東省濟南市天橋區重點中學2025年初三第五次模擬考試數學試題試卷含解析
- 寧夏吳忠市鹽池一中學2025年初三下-第一次調研考試化學試題試卷含解析
- 浙江省寧波萬里國際學校2025年初三數學試題下學期第二次模擬考試試題含解析
- 沙洲職業工學院《通信工程專業導論》2023-2024學年第二學期期末試卷
- 江蘇省江都區六校2025屆初三入學調研物理試題(1)試卷含解析
- 江西司法警官職業學院《生物信息處理》2023-2024學年第二學期期末試卷
- 寧波市海曙區2025屆初三1月調研(期末)測試物理試題含解析
- 吉林司法警官職業學院《工程流體力學》2023-2024學年第二學期期末試卷
- 施工現場日周月安全檢查記錄表
- 板材生產線的張力控制和負荷平衡控制
- G101-2現澆混凝土板式樓梯
- 熒光光譜知識
- 招標代理企業內部管理規章制度
- 最全的聚酯成型網系列型號規格技術參數
- 公安民警職業能力心理檢驗測試
- 關于農業水價綜合改革情況的調研報告
- 某糧食倉庫屋面預應力拱板制作分項施工方案(附圖)
- 湖南電力行業設計院匯總
- 電氣工程專業畢業論文[精品論文]直驅永磁同步風力發電機的設計研究
評論
0/150
提交評論