四川省長寧縣培風中學2023學年高三第二次診斷性檢測數學試卷(含答案解析)_第1頁
四川省長寧縣培風中學2023學年高三第二次診斷性檢測數學試卷(含答案解析)_第2頁
四川省長寧縣培風中學2023學年高三第二次診斷性檢測數學試卷(含答案解析)_第3頁
免費預覽已結束,剩余18頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點,則異面直線與所成角的余弦值為A.0 B. C. D.12.若,則,,,的大小關系為()A. B.C. D.3.設復數滿足(為虛數單位),則復數的共軛復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如圖,圓的半徑為,,是圓上的定點,,是圓上的動點,點關于直線的對稱點為,角的始邊為射線,終邊為射線,將表示為的函數,則在上的圖像大致為()A. B. C. D.5.定義在上的奇函數滿足,若,,則()A. B.0 C.1 D.26.一個超級斐波那契數列是一列具有以下性質的正整數:從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數列的個數為()A.3 B.4 C.5 D.67.己知,,,則()A. B. C. D.8.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.9.記個兩兩無交集的區間的并集為階區間如為2階區間,設函數,則不等式的解集為()A.2階區間 B.3階區間 C.4階區間 D.5階區間10.根據如圖所示的程序框圖,當輸入的值為3時,輸出的值等于()A.1 B. C. D.11.已知函數在區間上恰有四個不同的零點,則實數的取值范圍是()A. B. C. D.12.閱讀如圖的程序框圖,運行相應的程序,則輸出的的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果橢圓的對稱軸為坐標軸,短軸的一個端點與兩焦點組成一正三角形,焦點在x軸上,且=,那么橢圓的方程是.14.有以下四個命題:①在中,的充要條件是;②函數在區間上存在零點的充要條件是;③對于函數,若,則必不是奇函數;④函數與的圖象關于直線對稱.其中正確命題的序號為______.15.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.16.函數(為自然對數的底數,),若函數恰有個零點,則實數的取值范圍為__________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點.(1)求證:直線MN⊥平面ACB1;(2)求點C1到平面B1MC的距離.18.(12分)已知,.(1)當時,證明:;(2)設直線是函數在點處的切線,若直線也與相切,求正整數的值.19.(12分)在中,設、、分別為角、、的對邊,記的面積為,且.(1)求角的大小;(2)若,,求的值.20.(12分)已知函數,,且.(1)當時,求函數的減區間;(2)求證:方程有兩個不相等的實數根;(3)若方程的兩個實數根是,試比較,與的大小,并說明理由.21.(12分)如圖,在正四棱柱中,,,過頂點,的平面與棱,分別交于,兩點(不在棱的端點處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點,當四邊形為菱形時,求長.22.(10分)已知函數(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【答案解析】

根據題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.2.D【答案解析】因為,所以,因為,,所以,.綜上;故選D.3.D【答案解析】

先把變形為,然后利用復數代數形式的乘除運算化簡,求出,得到其坐標可得答案.【題目詳解】解:由,得,所以,其在復平面內對應的點為,在第四象限故選:D【答案點睛】此題考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,屬于基礎題.4.B【答案解析】

根據圖象分析變化過程中在關鍵位置及部分區域,即可排除錯誤選項,得到函數圖象,即可求解.【題目詳解】由題意,當時,P與A重合,則與B重合,所以,故排除C,D選項;當時,,由圖象可知選B.故選:B【答案點睛】本題主要考查三角函數的圖像與性質,正確表示函數的表達式是解題的關鍵,屬于中檔題.5.C【答案解析】

首先判斷出是周期為的周期函數,由此求得所求表達式的值.【題目詳解】由已知為奇函數,得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【答案點睛】本小題主要考查函數的奇偶性和周期性,屬于基礎題.6.A【答案解析】

根據定義,表示出數列的通項并等于2020.結合的正整數性質即可確定解的個數.【題目詳解】由題意可知首項為2,設第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當的值可以為;即有3個這種超級斐波那契數列,故選:A.【答案點睛】本題考查了數列新定義的應用,注意自變量的取值范圍,對題意理解要準確,屬于中檔題.7.B【答案解析】

先將三個數通過指數,對數運算變形,再判斷.【題目詳解】因為,,所以,故選:B.【答案點睛】本題主要考查指數、對數的大小比較,還考查推理論證能力以及化歸與轉化思想,屬于中檔題.8.B【答案解析】

根據組合知識,計算出選出的人分成兩隊混合雙打的總數為,然后計算和分在一組的數目為,最后簡單計算,可得結果.【題目詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數為:和分在一組的數目為所以所求的概率為故選:B【答案點睛】本題考查排列組合的綜合應用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.9.D【答案解析】

可判斷函數為奇函數,先討論當且時的導數情況,再畫出函數大致圖形,將所求區間端點值分別看作對應常函數,再由圖形確定具體自變量范圍即可求解【題目詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變為,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區間.故選:D【答案點睛】本題考查由函數的奇偶性,單調性求解對應自變量范圍,導數法研究函數增減性,數形結合思想,轉化與化歸思想,屬于難題10.C【答案解析】

根據程序圖,當x<0時結束對x的計算,可得y值.【題目詳解】由題x=3,x=x-2=3-1,此時x>0繼續運行,x=1-2=-1<0,程序運行結束,得,故選C.【答案點睛】本題考查程序框圖,是基礎題.11.A【答案解析】

函數的零點就是方程的解,設,方程可化為,即或,求出的導數,利用導數得出函數的單調性和最值,由此可根據方程解的個數得出的范圍.【題目詳解】由題意得有四個大于的不等實根,記,則上述方程轉化為,即,所以或.因為,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數解,故在區間上恰有四個不相等的零點,需且.故選:A.【答案點睛】本題考查復合函數的零點.考查轉化與化歸思想,函數零點轉化為方程的解,方程的解再轉化為研究函數的性質,本題考查了學生分析問題解決問題的能力.12.C【答案解析】

根據給定的程序框圖,計算前幾次的運算規律,得出運算的周期性,確定跳出循環時的n的值,進而求解的值,得到答案.【題目詳解】由題意,,第1次循環,,滿足判斷條件;第2次循環,,滿足判斷條件;第3次循環,,滿足判斷條件;可得的值滿足以3項為周期的計算規律,所以當時,跳出循環,此時和時的值對應的相同,即.故選:C.【答案點睛】本題主要考查了循環結構的程序框圖的計算與輸出問題,其中解答中認真審題,得出程序運行時的計算規律是解答的關鍵,著重考查了推理與計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

由題意可設橢圓方程為:∵短軸的一個端點與兩焦點組成一正三角形,焦點在軸上∴又,∴,∴橢圓的方程為,故答案為.考點:橢圓的標準方程,解三角形以及解方程組的相關知識.14.①【答案解析】

由三角形的正弦定理和邊角關系可判斷①;由零點存在定理和二次函數的圖象可判斷②;由,結合奇函數的定義,可判斷③;由函數圖象對稱的特點可判斷④.【題目詳解】解:①在中,,故①正確;②函數在區間上存在零點,比如在存在零點,但是,故②錯誤;③對于函數,若,滿足,但可能為奇函數,故③錯誤;④函數與的圖象,可令,即,即有和的圖象關于直線對稱,即對稱,故④錯誤.故答案為:①.【答案點睛】本題主要考查函數的零點存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.15.【答案解析】

設,由橢圓和雙曲線的定義得到,根據是以為底邊的等腰三角形,得到,從而有,根據,得到,再利用導數法求的范圍.【題目詳解】設,由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:【答案點睛】本題主要考查橢圓,雙曲線的定義和幾何性質,還考查了運算求解的能力,屬于中檔題.16.【答案解析】

令,則,恰有四個解.由判斷函數增減性,求出最小值,列出相應不等式求解得出的取值范圍.【題目詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調遞減,在上單調遞增,則,可得.設的負根為,由題意知,,,,則,.故答案為:.【答案點睛】本題考查導數在函數當中的應用,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析.(2)【答案解析】

(1)連接AC1,BC1,結合中位線定理可證MN∥BC1,再結合線面垂直的判定定理和線面垂直的性質分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點,通過等體積法,設C1到平面B1CM的距離為h,則有,結合幾何關系即可求解【題目詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點;∵M是AB的中點.所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點,設C1到平面B1CM的距離為h,因為MP,所以?MP,因為CM,B1C;B1M,所以所以:CM?B1M.因為,所以,解得所以點,到平面的距離為【答案點睛】本題主要考查面面垂直的證明以及點到平面的距離,一般證明面面垂直都用線面垂直轉化為面面垂直,而點到面的距離常用體積轉化來求,屬于中檔題18.(1)證明見解析;(2).【答案解析】

(1)令,求導,可知單調遞增,且,,因而在上存在零點,在此取得最小值,再證最小值大于零即可.(2)根據題意得到在點處的切線的方程①,再設直線與相切于點,有,即,再求得在點處的切線直線的方程為②由①②可得,即,根據,轉化為,,令,轉化為要使得在上存在零點,則只需,求解.【題目詳解】(1)證明:設,則,單調遞增,且,,因而在上存在零點,且在上單調遞減,在上單調遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設直線與相切于點,注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數可知,,所以,,令,則,當時,為單調遞增函數,且,從而在上無零點;當時,要使得在上存在零點,則只需,,因為為單調遞增函數,,所以;因為為單調遞增函數,且,因此;因為為整數,且,所以.【答案點睛】本題主要考查導數在函數中的綜合應用,還考查了轉化化歸的思想和運算求解的能力,屬于難題.19.(1);(2)【答案解析】

(1)由三角形面積公式,平面向量數量積的運算可得,結合范圍,可求,進而可求的值.(2)利用同角三角函數基本關系式可求,利用兩角和的正弦函數公式可求的值,由正弦定理可求得的值.【題目詳解】解:(1)由,得,因為,所以,可得:.(2)中,,所以.所以:,由正弦定理,得,解得,【答案點睛】本題主要考查了三角形面積公式,平面向量數量積的運算,同角三角函數基本關系式,兩角和的正弦函數公式,正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.20.(1)(2)詳見解析(3)【答案解析】

試題分析:(1)當時,,由得減區間;(2)因為,所以,因為所以,方程有兩個不相等的實數根;(3)因為,,所以試題解析:(1)當時,,由得減區間;(2)法1:,,,所以,方程有兩個不相等的實數根;法2:,,是開口向上的二次函數,所以,方程有兩個不相等的實數根;(3)因為,,又在和增,在減,所以.考點:利用導數求函數減區間,二次函數與二次方程關系21.(1)證明見解析;(2)證明見解析;(3).【答案解析】

(1)由平面與平面沒有交點,可得與不相交,又與共面,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論